A number is called quasibinary if its decimal representation contains only digits 0 or 1. For example, numbers 0, 1, 101, 110011 — are quasibinary and numbers 2, 12, 900 are not.
You are given a positive integer n. Represent it as a sum of minimum number of quasibinary numbers.
Input
The first line contains a single integer n (1 ≤ n ≤ 106).
Output
In the first line print a single integer k — the minimum number of numbers in the representation of number n as a sum of quasibinary numbers.
In the second line print k numbers — the elements of the sum. All these numbers should be quasibinary according to the definition above, their sum should equal n. Do not have to print the leading zeroes in the numbers. The order of numbers doesn‘t matter. If there are multiple possible representations, you are allowed to print any of them.
Examples
input
Copy
9
output
Copy
9 1 1 1 1 1 1 1 1 1
input
Copy
32
output
Copy
3 10 11 11
用string做很简单
#include <iostream>
#include <vector>
#include <algorithm>
#include <string>
#include <set>
#include <queue>
#include <map>
#include <sstream>
#include <cstdio>
#include <cstring>
#include <numeric>
#include <cmath>
#include <unordered_set>
#include <unordered_map>
//#include <xfunctional>#define ll long long
#define mod 998244353
usingnamespace std;
int dir[4][2] = { {0,1},{0,-1},{-1,0},{1,0} };
constlonglong INF = 0x7f7f7f7f7f7f7f7f;
constint inf = 0x3f3f3f3f;
int main()
{
string n,t="",res;
vector<string> ans;
cin >> n;
for (int i = 0; i < n.size(); i++)
t += ‘0‘;
while (n != t)
{
res = "";
for (int i = 0; i < n.size(); i++)
{
if (n[i] == ‘0‘)
{
res += ‘0‘;
}
else
{
res += ‘1‘;
n[i]--;
}
}
for (int i = 0; res[i] == ‘0‘; i++)
{
res.erase(i, 1);
i--;
}
ans.push_back(res);
}
cout << ans.size() << endl;
for (int i = 0; i < ans.size(); i++)
cout << ans[i] << "";
return0;
}