首页 > 其他 > 详细

IoU-aware Single-stage Object Detector for Accurate Localization

时间:2020-02-24 16:45:52      阅读:81      评论:0      收藏:0      [点我收藏+]

网络的结构如下:

技术分享图片

采用FPN结构,Backbone是RetinalNet,分成了P3~P7共5个Layer,分别训练不同尺寸的Box.每个Layer对应的Head有2个分支,包括一个单独的分支用来预测分类,另一个分支用来预测两部分,一部分是Box坐标的回归,另一部分是GT Box和Anchor之间的IOU,这也是这篇论文的主要创新点,Faster RCNN等方法是对Anchor进行分类,与GT Box的IOU高于0.7的是正例,低于0.3的是负例,而这篇论文直接预测GT Box和Anchor之间的IOU.

Loss Function包括3个部分:分类损失,包括正例和负例,采用Focal Loss作为损失函数;回归损失,采用Smooth L1作为损失函数;IOU由于在0~1之间,采用Binary cross-entropy作为损失函数.

技术分享图片

推理时采用分类值和IOU的值的乘积作为预测框的置信度,也就是排序的依据,其中α用来调整两者的权重.

技术分享图片

 

IoU-aware Single-stage Object Detector for Accurate Localization

原文:https://www.cnblogs.com/mstk/p/12357367.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!