\[ Φ(x) = \int_a^xf (t) dt ,x∈[a, b] \]
证明:
任取\(x∈[a, b]\),改变量\(\triangle x\)满足\(x+\triangle x\in[a,b]\),对应的改变量\(\triangle\Phi=\Phi(x+\triangle x)-\Phi(x)\)满足:
\[
\begin{align}
\triangle\Phi=&\Phi(x+\triangle x)-\Phi(x)\=&\int_a^{x+\triangle x}f(t)dt-\int_a^{x}f(t)dt\=&\int_x^{x+\triangle x}f(t)dt
\end{align}
\]
由积分中值定理:
\[
\begin{align}
&\exist\xi\in[x,x+\triangle x]\sub[a,b]\s.t.&\to\int_x^{x+\triangle x}f(t)dt=f(\xi)\cdot\triangle x\\therefore f(\xi)&=\frac{\int_x^{x+\triangle x}f(t)dt}{\triangle x}
\end{align}
\]
因为\(f(x)\)在\([a,b]\)上连续,所以:
\[
\lim_{\triangle x\to0}f(\xi)=f(x)
\]
即:
\[
f(x)=\lim_{\triangle x\to0}\frac{\int_x^{x+\triangle x}f(t)dt}{\triangle x}=\frac{d}{dx}(\int_a^{x}f(t)dt)
\]
若函数\(f(x)\)在\([a,b]\)上连续,\(\phi(x),\varphi(x)\)在\([a,b]\)上可微,则
\[
\frac{d}{dx}(\int_{\varphi(x)}^{\phi(x)}f(t)dt)=f(\phi(x))\phi'(x)-f(\varphi(x))\varphi'(x)
\]
证明:
这里只给出积分上限为复合函数的情况下的证明,下限同理。
设\(F(x)\)是\(f(x)\)的一个原函数,设:
\[
\begin{cases}
u=\phi(x)\v=\varphi(x)
\end{cases},x\in[a,b]
\]
则原式为:
\[
\begin{align}
\frac{d}{dx}(\int_{a}^{\phi(x)}f(t)dt)=&
\frac{d}{dx}(\int_{a}^{u}f(t)dt)\(由链式求导法则)=&\frac{du}{dx}\cdot\frac{d}{du}(\int_{a}^{u}f(t)dt)\(由引理)=&\frac{du}{dx}\cdot f(u)\=&\frac{d}{dx}\phi(x)\cdot f(u)\=&f(\phi(x))\cdot\phi'(x)
\end{align}
\]
下限同理可证,于是可以得出:
\[
\frac{d}{dx}(\int_{\varphi(x)}^{\phi(x)}f(t)dt)=f(\phi(x))\phi'(x)-f(\varphi(x))\varphi'(x)
\]
原文:https://www.cnblogs.com/rrrrraulista/p/12321232.html