目录
尽管我们有四个不同的四面体,但是如果我们将顶点数\((v)\)减去棱数\((e)\)再加上面的数目\((J)\)
distance\(:|a-b|\)
properties\(:(1)|x| \geq 0\),for all \(x \in R\),and \("=” \Leftrightarrow x=0\)
\((2):|a-b|=|b-a|(|x|=|-x|)\)
\((3):|x+y| \leq |x|+|y|\),for all \(x,y \in R\)
(\(|a-c| \leq |a-b|+|b-c|\))
Distance function/metric space
Let \(X\) be a set.
\(\underline{Def:}\)A function \(X \times X \stackrel{d}{\longrightarrow}\mathbb{R}\)is called a distance function on \(X\)
1.\(\forall x,y\in X\),\(d(x,y)\geq 0\) and \("=” \Leftrightarrow x=y\)
2.\(\forall x,y\in X\),\(d(x,y)=d(y,x)\)
3.\(\forall x,y,z \in X\),\(d(x,z)\leq d(x,y)+d(y,z)\)
\(\mathfrak{A}:\)
1.\(x=(x_1,x_2,\dots,x_m),y=(y_1,y_2,\dots,y_m)\in \mathbb{R}^n\)
\(d_2(x,y):=\sqrt{|x_1-y_1|^2+\cdots+|x_m-y_m|^2}=|x-y|\)
\(d_2\) is a metric on \(\mathbb{R}^n\)(Cauchy inequality)
2.\(d_1(x,y):=|x_1-y_1|+|x_2-y_2|+\cdots+|x_m-y_m|\)
3.\(d_{\infty}(x,y)=max\{|x_1-y_1|,\dots,|x_m-y_m|\}\)
\(\mathfrak{B}:\)
X:a set.For \(x,y \in X\),let \[d(x,y):=\left\{
\begin{aligned}
1&if&x\leq y
\0&if&x =y
\end{aligned}
\right.
\]
\(d(x,y)\Rightarrow\)the discrete metric
we may generalize the definitions about limits and convergence to metric space
\(\underline{Def}\) Let \((X,d)\) be a metric space,\(a_n(n \in \mathbb{N})\)be a seq in \(\mathrm{X}\).and \(\mathcal{L}\)in X
\(a_n(n \in \mathbb{N})\)converges to \(\mathcal{L}\)
(1)For \(r \geq 0\)and \(x_0 \in X\),we let \(B_r(x_0)=\{x \in X|d(x,x_0)\leq r\}\)(open ball)
(2).S is an open set(of\((X,d)\)),if \(\forall x \in S\),\(\exists r >0\)
(\(B_r(x_0)\subset S\))open ball \(\Rightarrow\)open set
EX:
\((X,d):\)metric space.\(x_0 \in X,r \geq 0\)
Show that:(1)\(B_r(x_0)\)is open
(2)\(\{x \in X|d(x,x_0)> r\}\)is open
warning:A subset \(S\) of a topological space \((X, \mathcal{T})\) is said to be clopen if it is both open and closed in \((X, \mathcal{T})\)
Example. \(\quad\) Let \(X=\{a, b, c, d, e, f\}\) and
\[
\tau_{1}=\{X, \emptyset,\{a\},\{c, d\},\{a, c, d\},\{b, c, d, e, f\}\}
\]
We can see:
(i) the set \(\{a\}\) is both open and closed;
(ii) the set \(\{b, c\}\) is neither open nor closed;
(iii) the set \(\{c, d\}\) is open but not closed;
(iv) the set \(\{a, b, e, f\}\) is closed but not open.
In a discrete space every set is both open and closed, while in an indiscrete space\((X, \tau),\) all subsets of \(X\) except \(X\) and \(\emptyset\) are neither open nor closed.
\(\underline{Def:}\)A topology space
\(\mathcal{X}=(\underline{X},\eth_{x})\)consists of a set \(\underline{X}\),called the underlying space of \(\mathcal{X}\) ,and a family \(\eth_{x}\)of subsets of \(\mathcal{X}\)(ie.\(\eth_{x}\subset P(\underline{X})\))
\(P(\underline{X})\)means the power set of \(\underline{X}\)
s.t.:(1):\(\underline{X}\) and \(\varnothing \in \eth_{x}\)
(2):\(U_{\alpha}\in \eth_{x}(\alpha \in A) \Rightarrow\)
\(\cup_{\alpha \in A}U_{\alpha} \in \eth_{x}\)
(3).\(U,U^{\prime}\in \eth_{x} \Rightarrow U \cap U^{\prime} \in \eth_{x}\)
\(\eth_{x}\) is called a topology(topological structure) on \(\underline{X}\)
\(\underline{Convention:}\)We usually use \(\mathcal{X}\) to indicate the set \(\underline{X}\)and omit the subscript \(x\) in \(\eth_{x}\) by saying "a topological space\((X,\eth)\)"
\(\underline{Examples:}\)(1)metric space:
\((X,d) \looparrowright(X,\eth_{d})\)(open sets induced by d)
\(\bullet\)Different distance funcs might determine the same topology
\(\underline{Def:}\)Let X and Y be topology spaces and \(\underline{X}\stackrel{f}{\longrightarrow}\underline{Y}\)a map.
We say that f is conti(from X to Y)
f is conti at a point \(x_0 \in X\)(from X to Y)
(1)if\(\forall V \in f(x_0),V \in \eth_{Y},\exists x_0 \in U \in \eth_{x},f(U) \subset V\)
(2)f is continuous(from X to Y)
if it is conti at every point of X
\(\underline{Def:}\) X : top space
\(K \subset \underline{X}\)
K is compact on X if
\(\forall U_{\alpha} \subset_{open} X\)
我们从集合出发,在代数结构上我们得到群的性质
我们从拓扑结构上,我们能得到拓扑空间
一个集合X上一个拓扑是X的子集的一个族\(\Im\)
它满足以下条件:
\((i) \varnothing\)和\(X\)都要在\(\Im\)中
\((ii)\Im\)的任意子族的元素的并都要在\(\Im\)中
\((iii)\Im\)的任意有限子族的元素的交都要在\(\Im\)中
一个指定了拓扑\(\Im\)的集合X叫做一个拓扑空间(拓扑空间指的是有序对(\(\Im,X\)),一般来说不专门提到\(\Im\)
从某种角度来说,我们可以认为拓扑空间指的是一个集合X连同它的子集的一个族(拓扑空间指的是集合的某种组合),拓扑本身来说就是集合为元素的集合,这里我们引入幂集的概念\(2^{\mathcal{T}}\),\(\mathcal{T} \subset 2^{\mathcal{T}}\)
\(X\)的子集的全部组合我们称之为幂集\(2^X\)
==1.1:==\(X=\{a,b,c,d,e,f\},\Im_{1} =\{X,\varnothing,\{a\},\{c,d\},\{a,c,d\},\{b,c,d,e,f\}\}\)则\(\Im_{1}\)满足上述的性质,\(\Im_{1}\)为X上的一个拓扑
==1.2:==\(X=\{a,b,c,d,e\},\Im_{2} =\{X,\varnothing,\{a\},\{c,d\},\{a,c,e\},\{b,c,d\}\}\),\(\{a\}\cup\{c,d\} \nsubseteq \Im_{2}\),则\(\Im_{2}\)不是X上的拓扑
==1.3==\(X=\{a,b,c,d,e\},\Im_{3} =\{X,\varnothing,\{a\},\{f\},\{a,c,f\},\{b,c,d,e,f\}\}\),\(\{a\}\cap\{f\}\cap\{a,c,f\}\nsubseteq\Im_{3}\),则\(\Im_{3}\)不是X上的拓扑
==1.4==\(\Im_{4}\)为\(\mathbb{N}\)组成的所有有限子集,假设 \(A_i={i} ,i\)取遍所有大于1的整数。我们仔细想想,如果把所有的\(A_{i}\)并在一起,那就组成了\(\mathbb{N}\),\(\mathbb{N}\)为无穷集合,与拓扑并的性质违背,\(\Im_{4}\)为\(\mathbb{N}\)组成的所有有限子集,\(\Im_{4}\)不是X上的拓扑
1. 设 M 为正多面体,它的每个面有 p 个边,每个顶点是 q 个面的交点. 用Euler 定理\(v ? e + f = 2,\)证明:
(a). \(\frac{1}{p}+\frac{1}{q}=\frac{1}{2}+\frac{1}{e}\)
(b). 由 (a) 证明正多面体只有 5 种.
2. 计算由立方体按下图中箭头粘合边并且对面两两粘合(即上表面和底面粘合,前表面和后表面粘合,左侧面和右侧面粘合)得到的商空间的Euler示性数
1. 设 \(\mathcal{T}\) 是 \(X\) 上的拓扑,A 是 \(X\) 的一个子集,规定:
\(\mathcal{T}^{\prime}=\{A \cup U \quad | U \in \mathcal{T}\} \cup\{\emptyset\}\)
证明:\(\mathcal{T}^{\prime}\)也是\(X\)上的拓扑
2. 设集合\(X = \{a,b,c\}\), 请给出 \(X\)上的所有可能的拓扑.
3. 设\(X\)是一个拓扑空间,则对于任意 \(A,B\subset X\) 有:
(a). \((A \cap B)^{\circ}=A^{\circ} \cap B^{\circ}\)
(b). \(A^{\circ \circ}=A^{\circ}\)
4. 证明:每一个离散拓扑空间都是可度量化的。( 提示:注意到离散拓扑空间的任意子集都是开集,要证明其可度量化,只需说明存在?个度量,使得空间的任意?个子集都可以表示成?些由该度量定义的开球的并.)
3. 度量空间的每个子集的导集是闭集.
原文:https://www.cnblogs.com/zonghanli/p/12311902.html