首页 > 其他 > 详细

tensorflow学习笔记3(实战)

时间:2020-02-12 21:34:38      阅读:78      评论:0      收藏:0      [点我收藏+]

1、正则化缓解过拟合

正则化在损失函数中引入模型复杂度指标,利用给w加权值,弱化了训练数据的噪声

一般不会正则化b。

技术分享图片

 

 2、matplotlib.pyplot

 3、搭建模块化的神经网络八股:

前向传播就是搭建网络,设计网络结构(forward.py)

def forward(x,regularizer):   #regularizer是正则化权重
  w=

  b=

  y= 

  return y



def get_weight(shape,regularizer):

  w=tf.Variable()#给w赋初值

  tf.add_to_collection("losses",tf.contrib.layers.12_regularizer(regularizer)(w))

  return w





def get_bias(sahpe):

  b=tf.Variable()

  return b

反向传播就是训练网络,优化网络参数(backward.py)

def backward():
    x = tf.placeholder()
    y_ = tf.placeholder()
    y = forward.forward(x,REGULARIZER)
    global_step=tf.Variable(0,trainable=False)
    loss =


正则化



指数衰减学习率



滑动平均

4、三个模块

生成数据集 generateds.py

前向传播 forward.py

反向传播 backward.py

tensorflow学习笔记3(实战)

原文:https://www.cnblogs.com/h694879357/p/12292913.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!