首页 > 其他 > 详细

keras 简单使用

时间:2020-02-12 17:55:08      阅读:75      评论:0      收藏:0      [点我收藏+]

使用Keras做线性拟合

import keras
import numpy as np
import matplotlib.pyplot as plt
from keras.models import Sequential
from keras.layers import Dense

# 使用numpy生成100个随机点
x_data = np.random.rand(100)
noise = np.random.normal(0, 0.02, x_data.shape)
y_data = x_data*0.1 + 0.2 + noise

# 构建模型
model = Sequential()
model.add(Dense(1, input_dim=1))
model.compile(optimizer=sgd, loss=mse)

# 训练模型
for step in range(3001):
    cost = model.train_on_batch(x_data, y_data)
    if step % 500 == 0:
        print(cost:, cost)

# 打印出权值和偏置值
w, b = model.layers[0].get_weights()
print(W:, w, B: , b)

非线性拟合

import keras
import numpy as np
import matplotlib.pyplot as plt
from keras.models import Sequential
from keras.layers import Dense
from keras.optimizers import SGD

# 生成一批数据
x_data = np.linspace(-0.5, 0.5, 200)
noise = np.random.normal(0, 0.02, x_data.shape)
y_data = np.square(x_data) + noise

# 构建模型
model = Sequential()
model.add(Dense(10, input_dim=1, activation=tanh))
model.add(Dense(1))
sgd = SGD(lr=0.1)
model.compile(optimizer=sgd, loss=mse)

# 训练模型
for step in range(3001):
    cost = model.train_on_batch(x_data, y_data)
    if step % 500 == 0:
        print(cost:, cost)

# 打印出权值和偏置值
w, b = model.layers[0].get_weights()
print(W:, w, B: , b)

手写数字识别

import keras
from keras.datasets import mnist
from keras.utils import  np_utils
import numpy as np
import matplotlib.pyplot as plt
from keras.models import Sequential
from keras.layers import Dense

# 载入数据
(x_train, y_train), (x_test, y_test) = mnist.load_data()
# 转换数据格式
x_train = x_train.reshape(x_train.shape[0], -1)
x_test = x_test.reshape(x_test.shape[0], -1)
y_train = np_utils.to_categorical(y_train, num_classes=10)
y_test = np_utils.to_categorical(y_test, num_classes=10)

# 创建模型
model = Sequential()
model.add(Dense(64, input_dim=784, bias_initializer=one, activation=sigmoid))
model.add(Dense(10, bias_initializer=one, activation=softmax))
model.compile(optimizer=adam, loss=categorical_crossentropy, metrics=[acc])
model.fit(x_train, y_train, batch_size=128, epochs=10)

loss, accurancy = model.evaluate(x_test, y_test)
print(loss: , loss)
print(accurancy: , accurancy)

 

keras 简单使用

原文:https://www.cnblogs.com/abc23/p/12299607.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!