考虑树形 \(\text{DP}\)。
设 \(dp_i\) 为使 \(i\) 变成叛徒的最大值,同时 \(dp_i\) 也是使 \(i\) 不变成叛徒的最小值。
然后考虑如何转移状态。
如果 \(size_i > k\) ,那么 \(ans = \max\{dp_i\}\)。
#include <bits/stdc++.h>
#define DEBUG fprintf(stderr, "Passing [%s] line %d\n", __FUNCTION__, __LINE__)
#define itn int
#define gI gi
#define Max(x, y) ((x > y) ? x : y)
#define Min(x, y) ((x < y) ? x : y)
using namespace std;
inline int gi()
{
int f = 1, x = 0; char c = getchar();
while (c < '0' || c > '9') {if (c == '-') f = -1; c = getchar();}
while (c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
return f * x;
}
const int maxn = 500003;
int n, k, fa[maxn], sz[maxn], tot, head[maxn], ver[maxn * 2], nxt[maxn * 2];
vector <int> son[maxn];
double dp[maxn], ans;
void dfs1(int u, int f)
{
sz[u] = 1;
for (int i = head[u]; i; i = nxt[i])
{
int v = ver[i];
if (v == f) continue;
dfs1(v, u);
sz[u] += sz[v];
}
}
inline void add(int u, int v) {ver[++tot] = v, nxt[tot] = head[u], head[u] = tot;}
void dfs(int u, int f)
{
if (sz[u] == 1) {dp[u] = 1.0; return;}
for (int i = head[u]; i; i = nxt[i])
{
int v = ver[i];
if (v == f) continue;
dfs(v, u);
}
int len = son[u].size();
for (int i = 0; i < len; i+=1)
{
dp[u] = Max(dp[u], Min(dp[son[u][i]], 1.0 * sz[son[u][i]] / (sz[u] - 1)));
}
if (sz[u] > k) ans = max(ans, dp[u]);
}
int main()
{
//freopen(".in", "r", stdin);
//freopen(".out", "w", stdout);
n = gi(), k = gi();
for (int i = 1; i < n; i+=1)
{
fa[i + 1] = gi();
son[fa[i + 1]].push_back(i + 1);
add(i + 1, fa[i + 1]), add(fa[i + 1], i + 1);
}
dfs1(1, 0);
dfs(1, 0);
printf("%.10lf\n", ans);
return 0;
}
原文:https://www.cnblogs.com/xsl19/p/12283555.html