Given a sequence of positive integers and another positive integer p. The sequence is said to be a “perfect sequence” if M <= m * p where M and m are the maximum and minimum numbers in the sequence, respectively. Now given a sequence and a parameter p, you are supposed to find from the sequence as many numbers as possible to form a perfect subsequence.
Input Specification:
Each input file contains one test case. For each case, the first line contains two positive integers N and p, where N (<= 105) is the number of integers in the sequence, and p (<= 109) is the parameter. In the second line there are N positive integers, each is no greater than 109.
Output Specification:
For each test case, print in one line the maximum number of integers that can be chosen to form a perfect subsequence.
Sample Input:
10 8
2 3 20 4 5 1 6 7 8 9
Sample Output:
8
已知正整数序列seq[N],最大值为M,最小值为m,已知另一个正整数p(<=10^9),从数列中抽出一部分数字,求可以满足M<=m*p的数字最多抽取个数
要满足M<=mp抽取的数字最多(即:M与m中间夹的数字最多),需要取所有满足M<=mp的情况中,m最小,M最大
#include <iostream>
#include <algorithm>
using namespace std;
int main(int argc,char * argv[]) {
int n,p;
scanf("%d %d",&n,&p);
long long seq[n]= {0}; // 若为int,第5个测试点错误
for(int i=0; i<n; i++) {
scanf("%d",&seq[i]);
}
sort(seq,seq+n);
int maxnum=0;
for(int i=0; i<n; i++) {
// 二分查找
int left=i+1,right=n;
int mid = left+((right-left)>>1);
while(left<right) {
mid = left+((right-left)>>1);
if(seq[mid]>seq[i]*p) { //若是求第一个大于等于seq[i]*p,测试点2错误
right=mid;
} else {
left=mid+1;
}
}
if(right-i>maxnum)maxnum=right-i;
}
printf("%d",maxnum);
return 0;
}
PAT Advanced 1085 Perfect Sequence (25) [?分,two pointers]
原文:https://www.cnblogs.com/houzm/p/12252624.html