首页 > 编程语言 > 详细

算法应用杂谈-xgboost的偏差

时间:2020-02-01 17:51:02      阅读:75      评论:0      收藏:0      [点我收藏+]

一个小样本的cvr 估计问题中, 考虑用xgboost 模型. 发现结果的估计偏差很大. 仔细研究后, 发现现象:

  • 迭代步数不多, 一般3,5步就停了.
  • 预测的分数偏差很大, 分布不匀. pcoc很大. 注: pcoc = 分数均值/ 正样本占比 - 1
  • 类似的参数用 lightgbm跑则比较正确.

仔细分析后, 发现可以通过一个参数调整解决, 方法为:

  • 将base_score 设置为 正样本占比, 可以解决偏差大的问题. 但auc 可能变低, 需要相应的调整参数.
{
'min_child_weight': 100,
'lambda': 1,
'alpha': 1,
'base_score':0.012,
'grow_policy': 'lossguide',
'min_split_loss': 0.001
}

算法应用杂谈-xgboost的偏差

原文:https://www.cnblogs.com/bregman/p/12248999.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!