首页 > 数据库技术 > 详细

Flink| Table API| SQL

时间:2020-02-01 00:00:57      阅读:114      评论:0      收藏:0      [点我收藏+]

 

Table API是流处理和批处理通用的关系型API,Table API可以基于流输入或者批输入来运行而不需要进行任何修改。Table API是SQL语言的超集并专门为Apache Flink设计的,Table API是Scala 和Java语言集成式的API。与常规SQL语言中将查询指定为字符串不同,Table API查询是以Java或Scala中的语言嵌入样式来定义的,具有IDE支持如:自动完成和语法检测。

引入pom依赖

 

<dependency>
    <groupId>org.apache.flink</groupId>
    <artifactId>flink-table_2.11</artifactId>
    <version>1.7.0</version>
</dependency>

 

构造表环境

 

 

def main(args: Array[String]): Unit = {
  val env: StreamExecutionEnvironment = StreamExecutionEnvironment.getExecutionEnvironment

  val myKafkaConsumer: FlinkKafkaConsumer011[String] = MyKafkaUtil.getConsumer("GMALL_STARTUP")
  val dstream: DataStream[String] = env.addSource(myKafkaConsumer)

  val tableEnv: StreamTableEnvironment = TableEnvironment.getTableEnvironment(env)

  val startupLogDstream: DataStream[StartupLog] = dstream.map{ jsonString =>JSON.parseObject(jsonString,classOf[StartupLog]) }

  val startupLogTable: Table = tableEnv.fromDataStream(startupLogDstream)

   val table: Table = startupLogTable.select("mid,ch").filter("ch =‘appstore‘")

  val midchDataStream: DataStream[(String, String)] = table.toAppendStream[(String,String)]

  midchDataStream.print()
  env.execute()
}

 

动态表

如果流中的数据类型是case class可以直接根据case class的结构生成table

 

 

tableEnv.fromDataStream(startupLogDstream)  

 

或者根据字段顺序单独命名

tableEnv.fromDataStream(startupLogDstream,’mid,’uid  .......)  

最后的动态表可以转换为流进行输出

table.toAppendStream[(String,String)]

字段

 用一个单引放到字段前面 来标识字段名, 如 ‘name , ‘mid ,’amount 等

通过一个例子 了解TableAPI

//每10秒中渠道为appstore的个数
def main(args: Array[String]): Unit = {
  //sparkcontext
  val env: StreamExecutionEnvironment = StreamExecutionEnvironment.getExecutionEnvironment

  //时间特性改为eventTime
  env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime)

  val myKafkaConsumer: FlinkKafkaConsumer011[String] = MyKafkaUtil.getConsumer("GMALL_STARTUP")
  val dstream: DataStream[String] = env.addSource(myKafkaConsumer)

  val startupLogDstream: DataStream[StartupLog] = dstream.map{ jsonString =>JSON.parseObject(jsonString,classOf[StartupLog]) }
  //告知watermark 和 eventTime如何提取
  val startupLogWithEventTimeDStream: DataStream[StartupLog] = startupLogDstream.assignTimestampsAndWatermarks(new BoundedOutOfOrdernessTimestampExtractor[StartupLog](Time.seconds(0L)) {
    override def extractTimestamp(element: StartupLog): Long = {
      element.ts
    }
  }).setParallelism(1)

  //SparkSession
  val tableEnv: StreamTableEnvironment = TableEnvironment.getTableEnvironment(env)

  //把数据流转化成Table
  val startupTable: Table = tableEnv.fromDataStream(startupLogWithEventTimeDStream , mid,uid,appid,area,os,ch,logType,vs,logDate,logHour,logHourMinute,ts.rowtime)

  //通过table api 进行操作
  // 每10秒 统计一次各个渠道的个数 table api 解决
  //1 groupby  2 要用 window   3 用eventtime来确定开窗时间
  val resultTable: Table = startupTable.window(Tumble over 10000.millis on ts as tt).groupBy(ch,tt ).select( ch, ch.count)
 
 

  //把Table转化成数据流
  //val appstoreDStream: DataStream[(String, String, Long)] = appstoreTable.toAppendStream[(String,String,Long)]
  val resultDstream: DataStream[(Boolean, (String, Long))] = resultSQLTable.toRetractStream[(String,Long)]

  resultDstream.filter(_._1).print()

  env.execute()

}

关于group by

如果使用 groupby table转换为流的时候只能用toRetractDstream

  val rDstream: DataStream[(Boolean, (String, Long))] = table.toRetractStream[(String,Long)]

1、 toRetractDstream 得到的第一个boolean型字段标识 true就是最新的数据,false表示过期老数据

  val rDstream: DataStream[(Boolean, (String, Long))] = table.toRetractStream[(String,Long)]
  rDstream.filter(_._1).print()

1、 如果使用的api包括时间窗口,那么时间的字段必须,包含在group by中。

  val table: Table = startupLogTable.filter("ch =appstore").window(Tumble over 10000.millis on ts as tt).groupBy(ch ,tt).select("ch,ch.count ")

关于时间窗口

用到时间窗口,必须提前声明时间字段,如果是processTime直接在创建动态表时进行追加就可以

val startupLogTable: Table = tableEnv.fromDataStream(startupLogWithEtDstream,mid,uid,appid,area,os,ch,logType,vs,logDate,logHour,logHourMinute,ts.rowtime)

1      如果是EventTime要在创建动态表时声明

val startupLogTable: Table = tableEnv.fromDataStream(startupLogWithEtDstream,mid,uid,appid,area,os,ch,logType,vs,logDate,logHour,logHourMinute,ps.processtime)

1      滚动窗口可以使用Tumble over 10000.millis on

  val table: Table = startupLogTable.filter("ch =appstore").window(Tumble over 10000.millis on ts as tt).groupBy(ch ,tt).select("ch,ch.count ")

SQL如何编写

def main(args: Array[String]): Unit = {
  //sparkcontext
  val env: StreamExecutionEnvironment = StreamExecutionEnvironment.getExecutionEnvironment

  //时间特性改为eventTime
  env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime)

  val myKafkaConsumer: FlinkKafkaConsumer011[String] = MyKafkaUtil.getConsumer("GMALL_STARTUP")
  val dstream: DataStream[String] = env.addSource(myKafkaConsumer)

  val startupLogDstream: DataStream[StartupLog] = dstream.map{ jsonString =>JSON.parseObject(jsonString,classOf[StartupLog]) }
  //告知watermark 和 eventTime如何提取
  val startupLogWithEventTimeDStream: DataStream[StartupLog] = startupLogDstream.assignTimestampsAndWatermarks(new BoundedOutOfOrdernessTimestampExtractor[StartupLog](Time.seconds(0L)) {
    override def extractTimestamp(element: StartupLog): Long = {
      element.ts
    }
  }).setParallelism(1)

  //SparkSession
  val tableEnv: StreamTableEnvironment = TableEnvironment.getTableEnvironment(env)

  //把数据流转化成Table
  val startupTable: Table = tableEnv.fromDataStream(startupLogWithEventTimeDStream , mid,uid,appid,area,os,ch,logType,vs,logDate,logHour,logHourMinute,ts.rowtime)

  //通过table api 进行操作
  // 每10秒 统计一次各个渠道的个数 table api 解决
  //1 groupby  2 要用 window   3 用eventtime来确定开窗时间
  val resultTable: Table = startupTable.window(Tumble over 10000.millis on ts as tt).groupBy(ch,tt ).select( ch, ch.count)
 // 通过sql 进行操作

  val resultSQLTable : Table = tableEnv.sqlQuery( "select ch ,count(ch)   from "+startupTable+"  group by ch   ,Tumble(ts,interval 10 SECOND )")

  //把Table转化成数据流
  //val appstoreDStream: DataStream[(String, String, Long)] = appstoreTable.toAppendStream[(String,String,Long)]
  val resultDstream: DataStream[(Boolean, (String, Long))] = resultSQLTable.toRetractStream[(String,Long)]

  resultDstream.filter(_._1).print()

  env.execute()

}

 

Flink| Table API| SQL

原文:https://www.cnblogs.com/shengyang17/p/12247026.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!