n positive integers and a positive integer s, find the minimal length of a subarray of which the sum ≥ s. If there isn‘t one, return -1 instead.Example 1:
Input: [2,3,1,2,4,3], s = 7
Output: 2
Explanation: The subarray [4,3] has the minimal length under the problem constraint.
Example 2:
Input: [1, 2, 3, 4, 5], s = 100
Output: -1
If you have figured out the O(nlog n) solution, try coding another solution of which the time complexity is O(n).
思路:
用两根指针对数组进行一次遍历即可.
如果当前和小于s, 右指针右移, 扩大区间, 反之左指针右移, 缩小区间.
在这个过程中维持区间的和不小于s, 然后更新答案即可.
public class Solution {
/**
* @param nums: an array of integers
* @param s: An integer
* @return: an integer representing the minimum size of subarray
*/
public int minimumSize(int[] nums, int s) {
int ans = Integer.MAX_VALUE;
int i, j = 0;
int sum = 0;
//for 循环主指针
for (i = 0; i < nums.length; i++) {
sum += nums[i];
// while 循环辅指针
while(j < nums.length && sum >= s) {
ans = Math.min(ans, i - j + 1);
sum -= nums[j];
j++;
}
}
return ans == Integer.MAX_VALUE ? -1 : ans;
}
}
原文:https://www.cnblogs.com/FLAGyuri/p/12078519.html