首页 > 其他 > 详细

Elasticsearch学习笔记之—分词器 analyzer

时间:2019-12-19 16:59:38      阅读:131      评论:0      收藏:0      [点我收藏+]

analyzer

由三部分构成:

Character Filters、Tokenizers、Token filters

Character Filters 负责字符过滤    官方的解释是:字符过滤器用来把阿拉伯数字(?‎????????‎?)‎转成成Arabic-Latin的等价物(0123456789)或用于去掉html内容,如:<b>。

Tokenizers  负责分词,常用的分词器有:whitespace、standard

Token filters  

  1. Standard Token Filter   目前什么也不做
  2. ASCII Folding Token Filter  asciifolding 类型的词元过滤器,将不在前127个ASCII字符(“基本拉丁文”Unicode块)中的字母,数字和符号Unicode字符转换为ASCII等效项(如果存在)。
  3. Length Token Filter   

    length用于去掉过长或者过短的单词;

    min 定义最短长度

    max 定义最长长度

    用法如下:

    GET _analyze
    {
      "tokenizer" : "standard",
      "filter": [{"type": "length", "min":1, "max":3 }],  
      "text" : "this is a test"
    }

    结果:

    "tokens": [
        {
          "token": "is",
          "start_offset": 5,
          "end_offset": 7,
          "type": "<ALPHANUM>",
          "position": 1
        },
        {
          "token": "a",
          "start_offset": 8,
          "end_offset": 9,
          "type": "<ALPHANUM>",
          "position": 2
        }
      ]
  4. Lowercase Token Filter    将词元文本规范化为小写
  5. Uppercase Token Filter    将词元文本规范化为大写
  6. Stop Token Filter   过滤某些关键字  输入:
    {
      "tokenizer" : "standard",
      "filter": [{"type": "stop", "stopwords": ["this", "a"]}],  
      "text" : ["this is a test"]
    }

    输出:

    # stopwords中拦截词this, a 被过滤掉;
    "tokens": [
        {
          "token": "is",
          "start_offset": 5,
          "end_offset": 7,
          "type": "<ALPHANUM>",
          "position": 1
        },
        {
          "token": "test",
          "start_offset": 10,
          "end_offset": 14,
          "type": "<ALPHANUM>",
          "position": 3
        }
      ]

     

  7. Stemmer Token Filter    可以添加几乎所有的词元过滤器,所以是一个通用接口 用法如下
    PUT /my_index
    {
        "settings": {
            "analysis" : {
                "analyzer" : {
                    "my_analyzer" : {
                        "tokenizer" : "standard",
                        "filter" : ["standard", "lowercase", "my_stemmer"]
                    }
                },
                "filter" : {
                    "my_stemmer" : {
                        "type" : "stemmer",
                        "name" : "light_german"
                    }
                }
            }
        }
    }

     

  8. Synonym Token Filter  同意词
  9. Reverse Token Filter  将词反转,示例如下:
    调用:
    GET _analyze {
    "tokenizer": "standard", "filter": ["reverse"], "text": ["hello world"] }
    结果:
    "
    tokens": [ { "token": "olleh", "start_offset": 0, "end_offset": 5, "type": "<ALPHANUM>", "position": 0 }, { "token": "dlrow", "start_offset": 6, "end_offset": 11, "type": "<ALPHANUM>", "position": 1 } ]

     

  10. Unique Token Filter
    GET _analyze
    {
        "tokenizer": "standard",
        "filter": ["unique"],
        "text": ["this is a test test test"]
    }
    后面的多个test,最终生成的时候,只有一个。
    输出:
    "
    tokens": [ { "token": "this", "start_offset": 0, "end_offset": 4, "type": "<ALPHANUM>", "position": 0 }, { "token": "is", "start_offset": 5, "end_offset": 7, "type": "<ALPHANUM>", "position": 1 }, { "token": "a", "start_offset": 8, "end_offset": 9, "type": "<ALPHANUM>", "position": 2 }, { "token": "test", "start_offset": 10, "end_offset": 14, "type": "<ALPHANUM>", "position": 3 } ]

     

Elasticsearch学习笔记之—分词器 analyzer

原文:https://www.cnblogs.com/wjx-blog/p/12068487.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!