首页 > Web开发 > 详细

bzoj1444: [Jsoi2009]有趣的游戏

时间:2019-12-12 14:34:34      阅读:108      评论:0      收藏:0      [点我收藏+]

技术分享图片

首先我们有一个很\(naive\)的想法是构建出转移矩阵,然后矩阵快速幂迭代足够多次,得到的结果约为答案

复杂度\(O((nl)^3logk)\),正确性玄学

但是我们肯定不是要介绍这种方法,而是另外一种

高斯消元经典应用:解图上期望\(DP\)

我们设\(x_i\)为整局游戏经过\(x\)点的期望次数,则初始时\(x_0=1\)\(p_{i,j}\)\(i\)转移到\(j\)的概率,则有

\[x_0=1+p_{0,0}x_0+p_{1,0}x_1……+p_{n-1,0}x_{n-1}\]
\[x_i=p_{0,i}x_0+p_{1,i}x_1……+p_{n-1,i}x_{n-1}(i≠0)\]

把未知项移到一侧

\[-x_0+p_{0,0}x_0+p_{1,0}x_1……+p_{n-1,0}x_{n-1}=-1\]
\[-x_i+p_{0,i}x_0+p_{1,i}x_1……+p_{n-1,i}x_{n-1}=0(i≠0)\]

由于题目要求移动到某个标记节点就停止,所以标记节点处的期望次数就是它所对应的概率

所以直接高斯消元就可以得到答案,至于转移矩阵用AC自动机跑个trie图出来就好了

bzoj1444: [Jsoi2009]有趣的游戏

原文:https://www.cnblogs.com/knife-rose/p/12028078.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!