首页 > 其他 > 详细

有监督学习的损失函数

时间:2019-11-24 15:34:42      阅读:89      评论:0      收藏:0      [点我收藏+]

分类问题

以下均以二分类问题为例,即\(Y=\{1, -1\}\) , \(y = \mathop{sign}(f(x_i; \theta))\)

0-1损失

\[L_{0-1}(f, y) = I(fy \leq 0)\]
非凸、非光滑,难以优化

Hinge损失函数

0-1损失的一个代理函数,是0-1损失相对紧的上界,称为合页损失函数
\[L_{hinge}(f, y) = \max\{0, 1-fy\}\]
\(fy=1\)处不可导,因此不能用梯度下降优化,而是用次梯度下降

Logistic损失函数

0-1损失的代理函数,凸上界
\[L_{logistic}(f, y) = \log_2 (1 + \exp (-fy))\]
处处光滑,可用梯度下降。但对所有样本点都有惩罚,因此对异常值更敏感

交叉熵损失函数

0-1损失函数的代理函数,光滑凸上界
\[L_{cross \ entropy} (f, y) = -\log2(\frac{1+fy}{2})\quad f \in [-1, 1]\]

回归问题

对于回归问题,有\(y = f(x_i;\theta)\)

平方损失函数

\[L_{square}(f, y) = (f - y)^2\]
光滑函数,能用梯度下降,但对异常点敏感

绝对损失函数

\[L_{absolute}(f, y) = |f - y|\]
相当于做中值回归,比平方损失函数鲁棒,但在\(f=y?\)处无法求导数

Huber损失函数

综合考虑可导性和鲁棒性
\[L_{huber}(f, y) = \begin{aligned} \begin{cases} (f-y)^2 & |f-y| \leq \delta \\ 2\delta|f-y|-\delta^2 & |f-y|> \delta \end{cases} \end{aligned}\]
\(|f-y|\)较小时为平方损失,在\(|f-y|\)较大时为线性损失,处处可导,且对异常点鲁棒

有监督学习的损失函数

原文:https://www.cnblogs.com/weilonghu/p/11922456.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!