首页 > 其他 > 详细

shape和reshape

时间:2019-11-23 19:18:55      阅读:79      评论:0      收藏:0      [点我收藏+]
import numpy as np
a = np.array([1,2,3,4,5,6,7,8])  #一维数组
print(a.shape[0])  #值为8,因为有8个数据
print(a.shape[1])  #IndexError: tuple index out of range

a = np.array([[1,2,3,4],[5,6,7,8]])  #二维数组
print(a.shape[0])  #值为2,最外层矩阵有2个元素,2个元素还是矩阵。
print(a.shape[1])  #值为4,内层矩阵有4个元素。
print(a.shape[2])  #IndexError: tuple index out of range

a = np.array([1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16]) #一维数组
print(a.reshape(2,8))#建立二维数组,两行八列
print(a.reshape((2,2,2,2)))#建立四维数组
print(a.reshape((2,2,2,2)))#建立四维数组
print(a.reshape((2,4,2)))#建立三维数组



技术分享图片

 

 

 技术分享图片

 

 

图像重建数组

image = np.array([[[ 0.67826139, 0.29380381],
[ 0.90714982, 0.52835647],
[ 0.4215251 , 0.45017551]],

[[ 0.92814219, 0.96677647],
[ 0.85304703, 0.52351845],
[ 0.19981397, 0.27417313]],

[[ 0.60659855, 0.00533165],
[ 0.10820313, 0.49978937],
[ 0.34144279, 0.94630077]]])

三维数组相当于(3,3,2)

image.shape[0]=3最外层

image.shape[1]=3次外层

image.shape[2]=2最里层

3*3*2=16

经过 v = image.reshape(image.shape[0]*image.shape[1]*image.shape[2],1)   

变成 16行,1列

image2vector(image) = 
[[0.67826139] [0.29380381] [0.90714982] [0.52835647] [0.4215251 ] [0.45017551] [0.92814219] [0.96677647] [0.85304703] [0.52351845] [0.19981397] [0.27417313] [0.60659855] [0.00533165] [0.10820313] [0.49978937] [0.34144279] [0.94630077]]

 

shape和reshape

原文:https://www.cnblogs.com/cmybky/p/11918699.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!