首页 > 编程语言 > 详细

(二)初识NumPy库(数组的操作和运算)

时间:2019-11-20 21:46:26      阅读:125      评论:0      收藏:0      [点我收藏+]

本章主要介绍的是ndarray数组的操作和运算!

一、 ndarray数组的操作:

操作是指对数组的索引和切片。索引是指获取数组中特定位置元素的过程;切片是指获取数组中元素子集的过程。

1、一维数组的索引和切片与python的列表类似:

 索引:

import numpy as np

a = np.array([9, 8, 7, 6, 5])
print(a[2])
7

切片:起始编号:终止编号:(不含):步长  三元素用冒号分割

import numpy as np
a = np.array([9, 8, 7, 6, 5])
print(a[1:4:2])
[8 6]

2、多维数组的索引和切片:

索引:

import numpy as np
a = np.arange(24).reshape((2, 3, 4))
print(a)
print(a[1, 2, 3])
print(a[0, 1, 2])
print(a[-1, -2, -3])
[[[ 0  1  2  3]
  [ 4  5  6  7]
  [ 8  9 10 11]]

 [[12 13 14 15]
  [16 17 18 19]
  [20 21 22 23]]]
23
6
17

切片:选取一个维度用:

import numpy as np
a = np.arange(24).reshape((2, 3, 4))
print(a)
print(a[:, 1, -3])              
print(a[:, 1:3, :])
print(a[:, :, ::2])
[[[ 0  1  2  3]
  [ 4  5  6  7]
  [ 8  9 10 11]]

 [[12 13 14 15]
  [16 17 18 19]
  [20 21 22 23]]]
[ 5 17]
[[[ 4  5  6  7]
  [ 8  9 10 11]]

 [[16 17 18 19]
  [20 21 22 23]]]
[[[ 0  2]
  [ 4  6]
  [ 8 10]]

二、ndarray数组的运算:

1、数组与标量之间的运算作用于数组的每一个元素:

import numpy as np
a = np.arange(24).reshape((2, 3, 4))
print(a)
print(a.mean())
print(a / a.mean())

[[[ 0  1  2  3]
  [ 4  5  6  7]
  [ 8  9 10 11]]

 [[12 13 14 15]
  [16 17 18 19]
  [20 21 22 23]]]
11.5
[[[0.         0.08695652 0.17391304 0.26086957]
  [0.34782609 0.43478261 0.52173913 0.60869565]
  [0.69565217 0.7826087  0.86956522 0.95652174]]

 [[1.04347826 1.13043478 1.2173913  1.30434783]
  [1.39130435 1.47826087 1.56521739 1.65217391]
  [1.73913043 1.82608696 1.91304348 2.        ]]]

 2、Numpy的一元函数:

对ndarray中的数据执行元素级运算的函数:

Numpy的一元函数
   
   
   
   
   
   
   
   
   
   
   
   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(二)初识NumPy库(数组的操作和运算)

原文:https://www.cnblogs.com/lsyb-python/p/11900845.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!