我们知道,CPU资源是有限的,任务的处理速度与线程个数并不是线性正相关。相反,过多的线程反?会导致CPU频繁切换,处理性能下降。
所以,线程池的大小一般都是综合考虑要处理任务的特点和硬件环境,来事先设置的。
当我们向固定大小的线程池中请求一个线程时,如果线程池中没有空闲资源了,这个时候线程池如何处理这个请求?是拒绝请求还是排队请求?
各种处理策略又是怎么实现的呢?
实际上,这些问题并不复杂,其底层的数据结构就是我们今天要学的内容,队列(queue)。
1、什么是队列?
你可以把它想象成排队买票,先来的先买,后来的人只能站末尾,不允许插队。先进者先出,这就是典型的“队列”。
2、队列支持的操作
1、入队enqueue(),放一个数据到队列尾部;
2、出队dequeue(),从队列头部取一个元素。
3、队列的应用场景
1、高性能队列Disruptor、Linux环形缓存,都用到了循环并发队列;
2、Java concurrent并发包利用ArrayBlockingQueue来实现公平锁等。
队列和栈一样,也是一种操作受限的线性表数据结构
跟栈一样,队列可以用数组来实现,也可以用链表来实现。用数组实现的栈叫作顺序栈,用链表实现的栈叫作链式栈。同样,用数组实现的队列叫作顺序队列,
链链表实现的队列叫作链式队列。
1、用数组实现的队列代码
// 用数组实现的队列
public class ArrayQueue {
// 数组:items,数组大小:n
private String[] items;
private int n = 0;
// head表示队头下标,tail表示队尾下标
private int head = 0;
private int tail = 0;
// 申请一个大小为capacity的数组
public ArrayQueue(int capacity) {
items = new String[capacity];
n = capacity;
}
// 入队
public boolean enqueue(String item) {
// 如果tail == n 表示队列已经满了
if (tail == n) return false;
items[tail] = item;
++tail;
return true;
}
// 出队
public String dequeue() {
// 如果head == tail 表示队列为空
if (head == tail) return null;
// 为了让其他语言的同学看的更加明确,把--操作放到单独一行来写了
String ret = items[head];
++head;
return ret;
}
}
2、实现思路
队列需要两个指针:

你可以结合下面这幅图来理解。当a、b、c、d依次入队之后,队列中的head指针指向下标为0的位置,tail指针指向下标为4的位置。
当我们调用两次出队操作之后,队列中head指针指向下标为2的位置,tail指针仍然指向下标为4的位置。
2、数据搬移
随着不停地进行入队、出队操作,head和tail都会持续往后移动。当tail移动到最右边,即使数组中还有空闲空间,也无法继续往队列中添加数据了。这个问题该如何解决呢?
但是,每次进行出队操作都相当于删除数组下标为0的数据,要搬移整个队列中的数据,这样出队操作的时间复杂度就会从原来的O(1)变为O(n)。能不能优化一下呢?
实际上,我们在出队时可以不用搬移数据。如果没有空闲空间了,
我们只需要在入队时,再集中触发一次数据的搬移操作。借助这个思想,出队函数dequeue()保持不变,
我们稍加改造一下入队函数enqueue()的实现,就可以轻松解决刚才的问题了。下面是具体的代码:
// 入队操作,将item放入队尾
public boolean enqueue(String item) {
// tail == n表示队列末尾没有空间了
if (tail == n) {
// tail ==n && head==0,表示整个队列都占满了
if (head == 0) return false;
// 数据搬移
for (int i = head; i < tail; ++i) {
items[i-head] = items[i];
}
// 搬移完之后重新更新head和tail
tail -= head;
head = 0;
}
items[tail] = item;
++tail;
return true;
}
从代码中我们看到,当队列的tail指针移动到数组的最右边后,如果有新的数据入队,我们可以将head到tail之间的数据,整体搬移到数组中0到tail-head的位置。

基于链表的实现,我们同样需要两个指针:head指针和tail指针。它们分别指向链表的第一个结点和最后一个结点。
如图所示:
我将具体的代码放到GitHub上,你可以自己试着实现一下,然后再去GitHub上跟我实现的代码对比下,看写得对不对。

循环队列,顾名思义,它长得像一个环。原本数组是有头有尾的,是一条直线。现在我们把首尾相连,扳成了一个环。我画了一张图,你可以直观地感受一下。

我们可以看到:
所以,在a,b依次入队之后,循环队列中的元素就变成了下面的样子:

要想写出没有bug的循环队列的实现代码,我个人觉得,最关键的是,确定好队空和队满的判定条件。
我画了一张队列满的图,你可以看一下,试着总结一下规律:

就像我图中画的队满的情况,tail=3,head=4,n=8,
所以总结一下规律就是:(3+1)%8=4。多画一张队满的图,你就会发现,当队满时,(tail+1)%n=head。
你有没有发现,当队列满时,图中的tail指向的位置实际上是没有存储数据的。所以,循环队列会浪费一个数组的存储空间。
Talk is cheap,如果还是没怎么理解,那就show you code吧。
public class CircularQueue {
// 数组:items,数组大小:n
private String[] items;
private int n = 0;
// head表示队头下标,tail表示队尾下标
private int head = 0;
private int tail = 0;
// 申请一个大小为capacity的数组
public CircularQueue(int capacity) {
items = new String[capacity];
n = capacity;
}
// 入队
public boolean enqueue(String item) {
// 队列满了
if ((tail + 1) % n == head) return false;
items[tail] = item;
tail = (tail + 1) % n;
return true;
}
// 出队
public String dequeue() {
// 如果head == tail 表示队列为空
if (head == tail) return null;
String ret = items[head];
head = (head + 1) % n;
return ret;
}
}
阻塞队列其实就是在队列基础上增加了阻塞操作。

你应该已经发现了,上述的定义就是一个“生产者-消费者模型”!是的,我们可以使用阻塞队列,轻松实现一个“生产者-消费者模型”!
这种基于阻塞队列实现的“生产者-消费者模型”,可以有效地协调生产和消费的速度:

前面我们讲了阻塞队列,在多线程情况下,会有多个线程同时操作队列,这个时候就会存在线程安全问题,那如何实现一个线程安全的队列呢?
在实战篇讲Disruptor的时候,我会再详细讲并发队列的应用。
我们一般有两种处理策略。第一种是非阻塞的处理方式,直接拒绝任务请求;
另一种是阻塞的处理方式,将请求排队,等到有空闲线程时,取出排队的请求继续处理。
那如何存储排队的请求呢?
我们希望公平地处理每个排队的请求,先进者先服务,所以队列这种数据结构很适合来存储排队请求。我们前面说过,队列有基于链表和基于数组这两种实现方式。
这两种实现方式对于排队请求又有什么区别呢?
基于链表的实现方式:
可以实现一个支持无限排队的有界队列(unbounded queue),但是可能会导致过多的请求排队等待,
请求处理的响应时间过长。所以,针对响应时间比较敏感的系统,基于链表实现的有限排队的线程池是不合适的。
而基于数组实现的有界队列(bounded queue):
除了前面讲到队列应用在线程池请求排队的场景之外:
实际上,对于大部分资源有限的场景,当没有空闲资源时,基本上都可以通过“队列”这种数据结构来实现请求排队。
今天我们讲了?种跟栈很相似的数据结构,队列。关于队列,你能掌握下面的内容,这节就没问题了。
循环队列是我们这节的重点。要想写出没有bug的循环队列实现代码,关键要确定好队空和队满的判定条件,具体的代码你要能写出来。
除此之外,我们还讲了?种?级的队列结构,阻塞队列、并发队列,底层都还是队列这种数据结构,只不过在之上附加了很多其他功能。阻塞队列就是入队、
出队操作可以阻塞,并发队列就是队列的操作多线程安全。
1. 除了线程池这种池结构会用到队列排队请求,你还知道有哪些类似的池结构或者场景中会用到队列的排队请求呢?
2. 今天讲到并发队列,关于如何实现无锁并发队列,网上有非常多的讨论。对这个问题,你怎么看呢?
原文:https://www.cnblogs.com/luoahong/p/11816944.html