#include <memory>
#include <iostream>
#include <ros/ros.h>
#include <ros/time.h>
#include <pcl_ros/point_cloud.h>
#include <std_msgs/Time.h>
#include <sensor_msgs/PointCloud2.h>
#include <hdl_graph_slam/FloorCoeffs.h>
#include <nodelet/nodelet.h>
#include <pluginlib/class_list_macros.h>
#include <pcl/common/transforms.h>
#include <pcl/features/normal_3d.h>
#include <pcl/search/impl/search.hpp>
#include <pcl/filters/impl/plane_clipper3D.hpp>
#include <pcl/filters/extract_indices.h>
#include <pcl/sample_consensus/ransac.h>
#include <pcl/sample_consensus/sac_model_plane.h>
namespace hdl_graph_slam {
class FloorDetectionNodelet : public nodelet::Nodelet {
public:
typedef pcl::PointXYZI PointT;
EIGEN_MAKE_ALIGNED_OPERATOR_NEW
FloorDetectionNodelet() {}
virtual ~FloorDetectionNodelet() {}
virtual void onInit() {
NODELET_DEBUG("initializing floor_detection_nodelet...");
nh = getNodeHandle();
private_nh = getPrivateNodeHandle();
initialize_params();
points_sub = nh.subscribe("/filtered_points", 256, &FloorDetectionNodelet::cloud_callback, this);
floor_pub = nh.advertise<hdl_graph_slam::FloorCoeffs>("/floor_detection/floor_coeffs", 32);
read_until_pub = nh.advertise<std_msgs::Header>("/floor_detection/read_until", 32);
floor_filtered_pub = nh.advertise<sensor_msgs::PointCloud2>("/floor_detection/floor_filtered_points", 32);
floor_points_pub = nh.advertise<sensor_msgs::PointCloud2>("/floor_detection/floor_points", 32);
}
private:
/**
* @brief initialize parameters
*/
void initialize_params() {
tilt_deg = private_nh.param<double>("tilt_deg", 0.0); // approximate sensor tilt angle [deg]
sensor_height = private_nh.param<double>("sensor_height", 2.0); // approximate sensor height [m]
height_clip_range= private_nh.param<double>("height_clip_range", 1.0); // points with heights in [sensor_height - height_clip_range, sensor_height + height_clip_range] will be used for floor detection
floor_pts_thresh = private_nh.param<int>("floor_pts_thresh", 512); // minimum number of support points of RANSAC to accept a detected floor plane
floor_normal_thresh = private_nh.param<double>("floor_normal_thresh", 10.0); // verticality check thresold for the detected floor plane [deg]
use_normal_filtering = private_nh.param<bool>("use_normal_filtering", true); // if true, points with "non-"vertical normals will be filtered before RANSAC
normal_filter_thresh = private_nh.param<double>("normal_filter_thresh", 20.0); // "non-"verticality check threshold [deg]
points_topic = private_nh.param<std::string>("points_topic", "/velodyne_points");
}
/**
* @brief callback for point clouds
* @param cloud_msg point cloud msg
*/
void cloud_callback(const sensor_msgs::PointCloud2ConstPtr& cloud_msg) {
pcl::PointCloud<PointT>::Ptr cloud(new pcl::PointCloud<PointT>());
pcl::fromROSMsg(*cloud_msg, *cloud);
if(cloud->empty()) {
return;
}
// floor detection
boost::optional<Eigen::Vector4f> floor = detect(cloud);
// publish the detected floor coefficients
hdl_graph_slam::FloorCoeffs coeffs;
coeffs.header = cloud_msg->header;
if(floor) {
coeffs.coeffs.resize(4);
for(int i=0; i<4; i++) {
coeffs.coeffs[i] = (*floor)[i];
}
}
floor_pub.publish(coeffs);
// for offline estimation
std_msgs::HeaderPtr read_until(new std_msgs::Header());
read_until->frame_id = points_topic;
read_until->stamp = cloud_msg->header.stamp + ros::Duration(1, 0); //每一秒执行一次
read_until_pub.publish(read_until);
read_until->frame_id = "/filtered_points";
read_until_pub.publish(read_until);
}
/**
* @brief detect the floor plane from a point cloud
* @param cloud input cloud
* @return detected floor plane coefficients
*/
boost::optional<Eigen::Vector4f> detect(const pcl::PointCloud<PointT>::Ptr& cloud) const {
// compensate the tilt rotation
Eigen::Matrix4f tilt_matrix = Eigen::Matrix4f::Identity(); //eye
tilt_matrix.topLeftCorner(3, 3) = Eigen::AngleAxisf(tilt_deg * M_PI / 180.0f, Eigen::Vector3f::UnitY()).toRotationMatrix(); //class Eigen::AngleAxis< Scalar >旋转class Eigen::Translation< Scalar, Dim >平移
// filtering before RANSAC (height and normal filtering)
pcl::PointCloud<PointT>::Ptr filtered(new pcl::PointCloud<PointT>);
pcl::transformPointCloud(*cloud, *filtered, tilt_matrix);
filtered = plane_clip(filtered, Eigen::Vector4f(0.0f, 0.0f, 1.0f, sensor_height + height_clip_range), false);
filtered = plane_clip(filtered, Eigen::Vector4f(0.0f, 0.0f, 1.0f, sensor_height - height_clip_range), true);
if(use_normal_filtering) {
filtered = normal_filtering(filtered);
}
pcl::transformPointCloud(*filtered, *filtered, static_cast<Eigen::Matrix4f>(tilt_matrix.inverse()));
if(floor_filtered_pub.getNumSubscribers()) {
filtered->header = cloud->header;
floor_filtered_pub.publish(filtered);
}
// too few points for RANSAC
if(filtered->size() < floor_pts_thresh) {
return boost::none;
}
// RANSAC
pcl::SampleConsensusModelPlane<PointT>::Ptr model_p(new pcl::SampleConsensusModelPlane<PointT>(filtered));
pcl::RandomSampleConsensus<PointT> ransac(model_p);
ransac.setDistanceThreshold(0.1);
ransac.computeModel();
pcl::PointIndices::Ptr inliers(new pcl::PointIndices);
ransac.getInliers(inliers->indices);
// too few inliers
if(inliers->indices.size() < floor_pts_thresh) {
return boost::none;
}
// verticality check of the detected floor's normal
Eigen::Vector4f reference = tilt_matrix.inverse() * Eigen::Vector4f::UnitZ();
Eigen::VectorXf coeffs;
ransac.getModelCoefficients(coeffs);
double dot = coeffs.head<3>().dot(reference.head<3>());
if(std::abs(dot) < std::cos(floor_normal_thresh * M_PI / 180.0)) {
// the normal is not vertical
return boost::none;
}
// make the normal upward
if(coeffs.head<3>().dot(Eigen::Vector3f::UnitZ()) < 0.0f) {
coeffs *= -1.0f;
}
if(floor_points_pub.getNumSubscribers()) {
pcl::PointCloud<PointT>::Ptr inlier_cloud(new pcl::PointCloud<PointT>);
pcl::ExtractIndices<PointT> extract;
extract.setInputCloud(filtered);
extract.setIndices(inliers);
extract.filter(*inlier_cloud);
inlier_cloud->header = cloud->header;
floor_points_pub.publish(inlier_cloud);
}
return Eigen::Vector4f(coeffs);
}
/**
* @brief plane_clip
* @param src_cloud
* @param plane
* @param negative
* @return
*/
pcl::PointCloud<PointT>::Ptr plane_clip(const pcl::PointCloud<PointT>::Ptr& src_cloud, const Eigen::Vector4f& plane, bool negative) const {
pcl::PlaneClipper3D<PointT> clipper(plane);
pcl::PointIndices::Ptr indices(new pcl::PointIndices);
clipper.clipPointCloud3D(*src_cloud, indices->indices);
pcl::PointCloud<PointT>::Ptr dst_cloud(new pcl::PointCloud<PointT>);
pcl::ExtractIndices<PointT> extract;
extract.setInputCloud(src_cloud);
extract.setIndices(indices);
extract.setNegative(negative);
extract.filter(*dst_cloud);
return dst_cloud;
}
/**
* @brief filter points with non-vertical normals
* @param cloud input cloud
* @return filtered cloud
*/
pcl::PointCloud<PointT>::Ptr normal_filtering(const pcl::PointCloud<PointT>::Ptr& cloud) const {
pcl::NormalEstimation<PointT, pcl::Normal> ne;
ne.setInputCloud(cloud);
pcl::search::KdTree<PointT>::Ptr tree(new pcl::search::KdTree<PointT>);
ne.setSearchMethod(tree);
pcl::PointCloud<pcl::Normal>::Ptr normals(new pcl::PointCloud<pcl::Normal>);
ne.setKSearch(10);
ne.setViewPoint(0.0f, 0.0f, sensor_height);
ne.compute(*normals);
pcl::PointCloud<PointT>::Ptr filtered(new pcl::PointCloud<PointT>);
filtered->reserve(cloud->size());
for (int i = 0; i < cloud->size(); i++) {
float dot = normals->at(i).getNormalVector3fMap().normalized().dot(Eigen::Vector3f::UnitZ());
if (std::abs(dot) > std::cos(normal_filter_thresh * M_PI / 180.0)) {
filtered->push_back(cloud->at(i));
}
}
filtered->width = filtered->size();
filtered->height = 1;
filtered->is_dense = false;
return filtered;
}
private:
ros::NodeHandle nh;
ros::NodeHandle private_nh;
// ROS topics
ros::Subscriber points_sub;
ros::Publisher floor_pub;
ros::Publisher floor_points_pub;
ros::Publisher floor_filtered_pub;
std::string points_topic;
ros::Publisher read_until_pub;
// floor detection parameters
// see initialize_params() for the details
double tilt_deg;
double sensor_height;
double height_clip_range;
int floor_pts_thresh;
double floor_normal_thresh;
bool use_normal_filtering;
double normal_filter_thresh;
};
}
PLUGINLIB_EXPORT_CLASS(hdl_graph_slam::FloorDetectionNodelet, nodelet::Nodelet)
原文:https://www.cnblogs.com/chenlinchong/p/11811539.html