题意:
给出一个长度为\(L\)的环,标号从\(0\)到\(L-1\)。
之后给出\(n\)个新郎,\(n\)个新娘离起点的距离。
现在新郎、新娘要一一配对,但显然每一对新人的产生都会走一定的距离\(d_i\),求所有\(d_i\)中最大值最小是多少。
思路:
感觉\(hall\)定理在某些情况下挺好用的?尤其是二分图比较特殊的情况,用来求最大匹配/判断最大匹配挺优秀的,通常都把问题转换成维护信息的问题。
代码实现将环变成链时有点细节,详见代码:
/*
 * Author:  heyuhhh
 * Created Time:  2019/11/5 19:43:44
 */
#include <bits/stdc++.h>
#define MP make_pair
#define fi first
#define se second
#define sz(x) (int)(x).size()
#define all(x) (x).begin(), (x).end()
#define rep(i, a, b) for(int i = a; i <= b; i++)
#define INF 0x3f3f3f3f
#define Local
#ifdef Local
  #define dbg(args...) do { cout << #args << " -> "; err(args); } while (0)
  void err() { std::cout << '\n'; }
  template<typename T, typename...Args>
  void err(T a, Args...args) { std::cout << a << ' '; err(args...); }
#else
  #define dbg(...)
#endif
void pt() {std::cout << '\n'; }
template<typename T, typename...Args>
void pt(T a, Args...args) {std::cout << a << ' '; pt(args...); }
using namespace std;
typedef long long ll;
typedef pair<int, int> pii;
//head
const int N = 2e5 + 5;
int n, L;
ll a[N << 2], b[N << 2];
 
bool chk(int x) {
    int p1 = 1, p2 = 1;
    int mn = INF;
    for(int i = 1; i <= 2 * n; i++) {
        while(p1 <= 4 * n && b[p1] < a[i] - x) ++p1;   
        while(p2 <= 4 * n && b[p2] <= a[i] + x) ++p2;
        mn = min(mn, i - p1);
        int now = i - p2 + 1;
        if(mn < now) return false;
    }
    return true;
}
 
void run(){
    for(int i = 1; i <= n; i++) cin >> a[i];
    for(int i = 1; i <= n; i++) cin >> b[i];
    sort(a + 1, a + n + 1); sort(b + 1, b + n + 1);
    for(int i = 1; i <= n; i++) a[i] += L, a[i + n] = a[i] + L;
    for(int i = 1; i <= 3 * n; i++) b[i + n] = b[i] + L;
    int l = 0, r = INF, mid;
    while(l < r) {
        mid = (l + r) >> 1;
        if(chk(mid)) r = mid;
        else l = mid + 1;
    }
    cout << l << '\n';
}
 
int main() {
    ios::sync_with_stdio(false);
    cin.tie(0); cout.tie(0);
    cout << fixed << setprecision(20);
    while(cin >> n >> L) run();
    return 0;
}【CF981F】Round Marriage(二分答案,hall定理)
原文:https://www.cnblogs.com/heyuhhh/p/11809130.html