最大子树最小的节点
性质1:“树中所有点到某个点的距离和中,到重心的距离和是最小的
性质2:把两棵树通过一条边相连,新的树的重心在原来两棵树重心的连线上。
性质3: 一棵树添加或者删除一个节点,树的重心最多只移动一条边的位置。
性质4: 一棵树最多有两个重心,且相邻。
每次找到一个节点的最大子树更新ans,一个节点的子树包括指向的子树与减去当前节点子树后剩下的部分。
#include <iostream>
#include <cstdio>
#include <cmath>
#include <queue>
#include <map>
#include <cstring>
#include <algorithm>
#define rint register int
#define ll long long
using namespace std;
template <typename xxx> inline void read(xxx &x)
{
int f = 1;x = 0;
char c = getchar();
for(; c < '0' || c > '9' ; c = getchar()) if(c=='-') f = -1;
for(;'0' <= c && c <= '9'; c = getchar()) x = (x << 3) + (x << 1) + (c ^ 48);
x *= f;
}
template <typename xxx> inline void print(xxx x)
{
if(x < 0) {
putchar('-');
x = -x;
}
if(x > 9) print(x/10);
putchar(x % 10 + '0');
}
const int inf = 0x7fffffff;
const int maxn = 100200;
const int mod = 2015;
struct edge{
int to,last;
}e[maxn];
int head[maxn],tot;
inline void add(int from,int to) {
++tot;
e[tot].to = to;
e[tot].last = head[from];
head[from] = tot;
}
int n,ans = inf,rt = 1;
int siz[maxn],dis[maxn];
inline void ddfs(int x,int fa){
siz[x] = 1;int ret = 0;
for(rint i = head[x]; i; i = e[i].last) {
if(e[i].to == fa) continue;
ddfs(e[i].to,x);
siz[x] += siz[e[i].to];
ret = max(ret,siz[e[i].to]);
}
ret = max(ret,n - siz[x]);
if(ret < ans) {
ans = ret;
rt = x;
}
else if(ret == ans && rt > x) rt = x;
return ;
}
inline void fk(int x,int fa) {
dis[x] = dis[fa] + 1;
for(rint i = head[x];i;i = e[i].last) {
if(e[i].to == fa) continue;
fk(e[i].to,x);
}
}
int main()
{
read(n);
for(rint i = 2;i <= n; ++i) {
int a,b;
read(a);read(b);
add(a,b);add(b,a);
}
dis[0] = -1;
ddfs(1,0);fk(rt,0);
int tem = 0;
for(rint i = 1;i <= n; ++i) tem += dis[i];
print(rt);putchar(' ');print(tem);
return 0;
}
原文:https://www.cnblogs.com/Thomastine/p/11746098.html