数据分析: 是把隐藏在一些看似杂乱无章的数据背后的信息提取出来,总结出所研究对象的内在规律
NumPy(Numerical Python) 是 Python 语言的一个扩展程序库,支持大量的维度数组与矩阵运算,此外也针对数组运算提供大量的数学函数库。
import numpy as np # 约定使用np
np.array([1, 2, 3, 4, 5]) # 一维数组
array([1, 2, 3, 4, 5])
np.array([[1, 2], [1, 2]]) # 二维数组
array([[1, 2],
[1, 2]])
np.array([[1, 'two'], [1, 2.3]])
array([['1', 'two'],
['1', '2.3']], dtype='<U11')
注意:
使用案例:
import matplotlib.pyplot as plt # 约定使用plt
img_arr = plt.imread('./ceshi.bmp')
img_arr # 三维数组
array([[[255, 255, 255],
[255, 255, 255],
[255, 255, 255],
...,
[255, 255, 255],
[255, 255, 255],
[255, 255, 255]]], dtype=uint8)
plt.imshow(img_arr) # 将三维数组展示成图片
<matplotlib.image.AxesImage at 0x1470e667160>
plt.imshow(img_arr - 50) # 操作该numpy数据,该操作会同步到图片中,发现眼色变了
<matplotlib.image.AxesImage at 0x14713a59cc0>
np.linspace(0, 100, 10) # 返回等差数列的一维数组 第三个参数表示元素的个数
array([ 0. , 11.11111111, 22.22222222, 33.33333333,
44.44444444, 55.55555556, 66.66666667, 77.77777778,
88.88888889, 100. ])
np.arange(0, 100, 2) # 返回等差数列的一维数组 第三个参数表示步长
array([ 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32,
34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66,
68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98])
np.random.randint(0, 100, size=(3, 5)) # 获得一个3行5列的二维数组,数组的每个元素是0-100的随机数
array([[74, 54, 26, 79, 64],
[ 3, 14, 4, 41, 10],
[29, 96, 61, 16, 70]])
np.random.randint(0, 100, size=(3, 2, 4)) # 三维数组
array([[[17, 31, 72, 71],
[68, 71, 69, 60]],
[[47, 91, 94, 32],
[ 9, 54, 47, 71]],
[[ 6, 96, 34, 25],
[13, 51, 29, 34]]])
np.random.seed(90)
np.random.randint(0, 100, size=(3, 5)) # 每次得到的数组都是一样的
array([[91, 29, 31, 67, 39],
[68, 58, 37, 18, 74],
[96, 51, 30, 80, 18]])
np.random.random(size=(3, 4)) # 0-1的随机数
array([[0.65727519, 0.1262984 , 0.5755297 , 0.39088299],
[0.17033964, 0.42278594, 0.94238902, 0.29860718],
[0.36670103, 0.39093547, 0.53337014, 0.97951138]])
主要参数:
type(img_arr)
numpy.ndarray
img_arr.ndim # 三维
3
img_arr.shape # 形状: 三个数表示维度是三
(519, 500, 3)
arr = np.array([[1, 2, 3], [1, 2, 3]])
arr.shape # 二维数组时,(2, 3): 第一个元素可以看作数组的行数,第二个元素看作数组的列数
(2, 3)
arr.size # 数组的总长度
6
arr.dtype # 数组的元素类型
dtype('int32')
arr = np.random.randint(0, 100, size=(5, 8))
arr
array([[43, 84, 3, 27, 75, 62, 17, 50],
[98, 95, 95, 40, 64, 51, 54, 36],
[47, 77, 93, 97, 97, 32, 54, 95],
[86, 54, 46, 33, 52, 53, 61, 8],
[19, 72, 40, 90, 69, 11, 91, 72]])
arr[0] # 第0行
array([43, 84, 3, 27, 75, 62, 17, 50])
arr[[0, 1]] # 第0行, 第1行
array([[43, 84, 3, 27, 75, 62, 17, 50],
[98, 95, 95, 40, 64, 51, 54, 36]])
arr[0, 3] # 第0行, 第3列
40
arr[0, [2, 3, 4]] # 0行, 2, 3, 4列
array([95, 40, 64])
一维数组的切片与列表完全一致, 多维时同理
arr
array([[43, 84, 3, 27, 75, 62, 17, 50],
[98, 95, 95, 40, 64, 51, 54, 36],
[47, 77, 93, 97, 97, 32, 54, 95],
[86, 54, 46, 33, 52, 53, 61, 8],
[19, 72, 40, 90, 69, 11, 91, 72]])
# 获取二维数组前两行
arr[0:2]
array([[43, 84, 3, 27, 75, 62, 17, 50],
[98, 95, 95, 40, 64, 51, 54, 36]])
# 获取二维数组前两列
arr[:, 0:2] # arr[行, 列]
array([[43, 84],
[98, 95],
[47, 77],
[86, 54],
[19, 72]])
# 获取二维数组前两行和前两列数据
arr[0:2, 0:2]
array([[43, 84],
[98, 95]])
# 将数组的行倒序
arr[::-1, :]
array([[19, 72, 40, 90, 69, 11, 91, 72],
[86, 54, 46, 33, 52, 53, 61, 8],
[47, 77, 93, 97, 97, 32, 54, 95],
[98, 95, 95, 40, 64, 51, 54, 36],
[43, 84, 3, 27, 75, 62, 17, 50]])
# 列倒序
arr[:, ::-1]
array([[50, 17, 62, 75, 27, 3, 84, 43],
[36, 54, 51, 64, 40, 95, 95, 98],
[95, 54, 32, 97, 97, 93, 77, 47],
[ 8, 61, 53, 52, 33, 46, 54, 86],
[72, 91, 11, 69, 90, 40, 72, 19]])
# 行列均倒序
arr[::-1, ::-1]
array([[72, 91, 11, 69, 90, 40, 72, 19],
[ 8, 61, 53, 52, 33, 46, 54, 86],
[95, 54, 32, 97, 97, 93, 77, 47],
[36, 54, 51, 64, 40, 95, 95, 98],
[50, 17, 62, 75, 27, 3, 84, 43]])
# 将图片进行倒置操作
plt.imshow(img_arr[::-1]) # 行倒序, 上下翻转, 其余翻转同理
<matplotlib.image.AxesImage at 0x14713cc2080>
# 裁剪出小黄人的眼镜
plt.imshow(img_arr)
<matplotlib.image.AxesImage at 0x14714164978>
plt.imshow(img_arr[50:220, 60:280])
<matplotlib.image.AxesImage at 0x147144fd940>
arr = np.random.randint(0, 100, 40)
arr
array([49, 49, 68, 31, 7, 18, 89, 80, 66, 29, 68, 42, 31, 42, 61, 58, 29,
88, 74, 64, 34, 53, 62, 57, 61, 60, 61, 47, 99, 15, 54, 24, 3, 90,
10, 71, 4, 34, 52, 1])
将一维数组变形成多维数组
arr.reshape((4, 10)) # 将arr变形为4行10列
array([[49, 49, 68, 31, 7, 18, 89, 80, 66, 29],
[68, 42, 31, 42, 61, 58, 29, 88, 74, 64],
[34, 53, 62, 57, 61, 60, 61, 47, 99, 15],
[54, 24, 3, 90, 10, 71, 4, 34, 52, 1]])
arr.reshape((4, -1)) # -1表示依照另一个参数自动计算
array([[49, 49, 68, 31, 7, 18, 89, 80, 66, 29],
[68, 42, 31, 42, 61, 58, 29, 88, 74, 64],
[34, 53, 62, 57, 61, 60, 61, 47, 99, 15],
[54, 24, 3, 90, 10, 71, 4, 34, 52, 1]])
将多维数组变形成一维数组
arr = np.random.randint(0, 100, size=(5, 8))
arr
array([[10, 21, 77, 5, 5, 2, 54, 84],
[88, 24, 15, 98, 16, 75, 93, 38],
[75, 85, 6, 61, 89, 7, 70, 55],
[44, 65, 94, 26, 88, 41, 25, 75],
[51, 40, 66, 65, 84, 11, 98, 12]])
arr.reshape((40))
array([10, 21, 77, 5, 5, 2, 54, 84, 88, 24, 15, 98, 16, 75, 93, 38, 75,
85, 6, 61, 89, 7, 70, 55, 44, 65, 94, 26, 88, 41, 25, 75, 51, 40,
66, 65, 84, 11, 98, 12])
1.一维,二维,多维数组的级联,实际操作中级联多为二维数组
np.concatenate((arr, arr), axis=1) # 将arr与arr拼接,1表示x轴拼接,0表示y轴拼接
array([[10, 21, 77, 5, 5, 2, 54, 84, 10, 21, 77, 5, 5, 2, 54, 84],
[88, 24, 15, 98, 16, 75, 93, 38, 88, 24, 15, 98, 16, 75, 93, 38],
[75, 85, 6, 61, 89, 7, 70, 55, 75, 85, 6, 61, 89, 7, 70, 55],
[44, 65, 94, 26, 88, 41, 25, 75, 44, 65, 94, 26, 88, 41, 25, 75],
[51, 40, 66, 65, 84, 11, 98, 12, 51, 40, 66, 65, 84, 11, 98, 12]])
2.合并两张照片
plt.imshow(np.concatenate((img_arr, img_arr), axis=1))
<matplotlib.image.AxesImage at 0x147146be6d8>
img_arr_3 = np.concatenate((img_arr, img_arr, img_arr), axis=1)
img_arr_9 = np.concatenate((img_arr_3, img_arr_3, img_arr_3), axis=0)
plt.imshow(img_arr_9)
<matplotlib.image.AxesImage at 0x14713ef15c0>
级联需要注意的点:
arr = np.random.randint(1, 100, size=(5, 8))
arr
array([[21, 65, 34, 74, 99, 44, 26, 41],
[66, 1, 27, 72, 35, 77, 22, 24],
[ 2, 11, 17, 64, 56, 75, 19, 50],
[85, 32, 80, 30, 11, 60, 48, 22],
[ 9, 53, 51, 48, 16, 61, 81, 21]])
arr.sum() # 所有元素的和
1730
arr.sum(axis=1) # 每一行的和
array([404, 324, 294, 368, 340])
arr.sum(axis=0) # 每一列的和
array([183, 162, 209, 288, 217, 317, 196, 158])
arr.max() # 参数同sum()
99
arr.min()
1
arr.mean(axis=1) # 每一行的平均值
array([50.5 , 40.5 , 36.75, 46. , 42.5 ])
Function Name NaN-safe Version Description
np.sum np.nansum Compute sum of elements
np.prod np.nanprod Compute product of elements
np.mean np.nanmean Compute mean of elements
np.std np.nanstd Compute standard deviation
np.var np.nanvar Compute variance
np.min np.nanmin Find minimum value
np.max np.nanmax Find maximum value
np.argmin np.nanargmin Find index of minimum value
np.argmax np.nanargmax Find index of maximum value
np.median np.nanmedian Compute median of elements
np.percentile np.nanpercentile Compute rank-based statistics of elements
np.any N/A Evaluate whether any elements are true
np.all N/A Evaluate whether all elements are true
np.power 幂运算
np.sort()与ndarray.sort()都可以,但有区别:
arr
array([[21, 65, 34, 74, 99, 44, 26, 41],
[66, 1, 27, 72, 35, 77, 22, 24],
[ 2, 11, 17, 64, 56, 75, 19, 50],
[85, 32, 80, 30, 11, 60, 48, 22],
[ 9, 53, 51, 48, 16, 61, 81, 21]])
np.sort(arr, axis=0) # 不改变原始数组
array([[ 2, 1, 17, 30, 11, 44, 19, 21],
[ 9, 11, 27, 48, 16, 60, 22, 22],
[21, 32, 34, 64, 35, 61, 26, 24],
[66, 53, 51, 72, 56, 75, 48, 41],
[85, 65, 80, 74, 99, 77, 81, 50]])
arr.sort(axis=1) # 改变原始数组
arr
array([[21, 26, 34, 41, 44, 65, 74, 99],
[ 1, 22, 24, 27, 35, 66, 72, 77],
[ 2, 11, 17, 19, 50, 56, 64, 75],
[11, 22, 30, 32, 48, 60, 80, 85],
[ 9, 16, 21, 48, 51, 53, 61, 81]])
原文:https://www.cnblogs.com/zyyhxbs/p/11688294.html