Java中的线程池是运用场景最多的并发框架,几乎所有需要异步或并发执行任务的程序
都可以使用线程池。在开发过程中,合理地使用线程池能够带来3个好处。
频繁的创建多线程,非常占用CPU,线程过多时造成线程池溢出
线程池是为突然大量爆发的线程设计的,通过有限的几个固定线程为大量的操作服务,减少了创建和销毁线程所需的时间,从而提高效率。
如果一个线程的时间非常长,就没必要用线程池了(不是不能作长时间操作,而是不宜。),况且我们还不能控制线程池中线程的开始、挂起、和中止。
Executor框架的最顶层实现是ThreadPoolExecutor类,Executors工厂类中提供的newScheduledThreadPool、newFixedThreadPool、newCachedThreadPool方法其实也只是ThreadPoolExecutor的构造函数参数不同而已。通过传入不同的参数,就可以构造出适用于不同应用场景下的线程池。
Java通过Executors(jdk1.5并发包)提供四种线程池,分别为:
创建一个可缓存线程池,如果线程池长度超过处理需要,可灵活回收空闲线程,若无可回收,则新建线程。示例代码如下:
// 无限大小线程池 jvm自动回收
ExecutorService newCachedThreadPool = Executors.newCachedThreadPool();
for (int i = 0; i < 10; i++) {
final int temp = i;
newCachedThreadPool.execute(new Runnable() {
@Override
public void run() {
try {
Thread.sleep(100);
} catch (Exception e) {
// TODO: handle exception
}
System.out.println(Thread.currentThread().getName() + ",i:" + temp);
}
});
}
总结: 线程池为无限大,当执行第二个任务时第一个任务已经完成,会复用执行第一个任务的线程,而不用每次新建线程。
创建一个定长线程池,可控制线程最大并发数,超出的线程会在队列中等待。示例代码如下:
ExecutorService newFixedThreadPool = Executors.newFixedThreadPool(5);
for (int i = 0; i < 10; i++) {
final int temp = i;
newFixedThreadPool.execute(new Runnable() {
@Override
public void run() {
try {
Thread.sleep(2000);
} catch (Exception e) {
// TODO: handle exception
}
System.out.println(Thread.currentThread().getId() + ",i:" + temp);
}
});
}
总结:因为线程池大小为5,每个任务输出index后sleep 2秒,所以每两秒打印3个数字。
定长线程池的大小最好根据系统资源进行设置。如Runtime.getRuntime().availableProcessors()
创建一个定长线程池,支持定时及周期性任务执行。延迟执行示例代码如下:
ScheduledExecutorService newScheduledThreadPool = Executors.newScheduledThreadPool(5);
for (int i = 0; i < 10; i++) {
final int temp = i;
newScheduledThreadPool.schedule(new Runnable() {
public void run() {
System.out.println("i:" + temp);
}
}, 3, TimeUnit.SECONDS);
}
程序启动后会等待3秒,再执行
创建一个单线程化的线程池,它只会用唯一的工作线程来执行任务,保证所有任务按照指定顺序(FIFO, LIFO, 优先级)执行。示例代码如下:
ExecutorService newSingleThreadExecutor = Executors.newSingleThreadExecutor();
for (int i = 0; i < 10; i++) {
final int index = i;
newSingleThreadExecutor.execute(new Runnable() {
@Override
public void run() {
System.out.println("index:" + index);
try {
Thread.sleep(200);
} catch (Exception e) {
// TODO: handle exception
}
}
});
}
结果依次输出
提交一个任务到线程池中,线程池的处理流程如下:
new ThreadPoolExecutor(corePoolSize, maximumPoolSize, keepAliveTime, unit, new ArrayBlockingQueue<>(3))
new ThreadPoolExecutor(1, 2, 60L, TimeUnit.SECONDS, new ArrayBlockingQueue<>(3))
如果当前线程池中的线程数目小于corePoolSize,则每来一个任务,就会创建一个线程去执行这个任务;
如果当前线程池中的线程数目>=corePoolSize,则每来一个任务,会尝试将其添加到任务缓存队列当中,若添加成功,则该任务会等待空闲线程将其取出去执行;若添加失败(一般来说是任务缓存队列已满),则会尝试创建新的线程去执行这个任务;
如果队列已经满了,则在总线程数不大于maximumPoolSize的前提下,则创建新的线程
如果当前线程池中的线程数目达到maximumPoolSize,则会采取任务拒绝策略进行处理;
如果线程池中的线程数量大于 corePoolSize时,如果某线程空闲时间超过keepAliveTime,线程将被终止,直至线程池中的线程数目不大于corePoolSize;
如果允许为核心池中的线程设置存活时间,那么核心池中的线程空闲时间超过keepAliveTime,线程也会被终止。
public class Test0007 {
public static void main(String[] args) {
ThreadPoolExecutor executor = new ThreadPoolExecutor(1, 2, 60L, TimeUnit.SECONDS, new ArrayBlockingQueue<>(3));
for (int i = 1; i <= 6; i++) {
TaskThred t1 = new TaskThred("任务" + i);
executor.execute(t1);
}
executor.shutdown();
}
}
class TaskThred implements Runnable {
private String taskName;
public TaskThred(String taskName) {
this.taskName = taskName;
}
@Override
public void run() {
System.out.println(Thread.currentThread().getName()+taskName);
}
}
CPU密集的意思是该任务需要大量的运算,而没有阻塞,CPU一直全速运行。
CPU密集任务只有在真正的多核CPU上才可能得到加速(通过多线程),而在单核CPU上,无论你开几个模拟的多线程,该任务都不可能得到加速,因为CPU总的运算能力就那些。
IO密集型,即该任务需要大量的IO,即大量的阻塞。在单线程上运行IO密集型的任务会导致浪费大量的CPU运算能力浪费在等待。所以在IO密集型任务中使用多线程可以大大的加速程序运行,即时在单核CPU上,这种加速主要就是利用了被浪费掉的阻塞时间。
要想合理的配置线程池的大小,首先得分析任务的特性,可以从以下几个角度分析:
性质不同的任务可以交给不同规模的线程池执行。
对于不同性质的任务来说,CPU密集型任务应配置尽可能小的线程,如配置CPU个数+1的线程数,IO密集型任务应配置尽可能多的线程,因为IO操作不占用CPU,不要让CPU闲下来,应加大线程数量,如配置两倍CPU个数+1,而对于混合型的任务,如果可以拆分,拆分成IO密集型和CPU密集型分别处理,前提是两者运行的时间是差不多的,如果处理时间相差很大,则没必要拆分了。
若任务对其他系统资源有依赖,如某个任务依赖数据库的连接返回的结果,这时候等待的时间越长,则CPU空闲的时间越长,那么线程数量应设置得越大,才能更好的利用CPU。
当然具体合理线程池值大小,需要结合系统实际情况,在大量的尝试下比较才能得出
IO密集型时,大部分线程都阻塞,故需要多配置线程数,2*cpu核数
个人博客 蜗牛
原文:https://www.cnblogs.com/codeobj/p/11675530.html