很好的一道题,可能第一次在考场上遇到欧拉函数
题意:对于一个整数对 $(a,b)$,若满足 $a\times b\leq n$且$a+b$是$a\times b$的因子,
则称为神奇的数对。问这样的数对共有个?
首先式子同时除一个$gcd(a,b)$,那么设$d=gcd(a,b)$,则$a=A/d,b=B/d$,
所以因为$a$,$b$,中已经将因子全部提出,所以$a\times b$与$a+b$是互质的
然后设$k$为$d/(a+b)$,显然$k\times (a+b)\times (a+b)\leq n$
因此$k\leq n/(x\times x)$
同时对于$a+b$我们只需枚举到$\sqrt{n} $即可
那么考虑范围,对于每个枚举的$i=a+b$,那么显然$k$的取值是$n/(i*i)$,
然后对于$i$我们可以求出$\varphi {i}$,
因为$a+b=i$,所以对于每个与$i$互质的数$x$可得$gcd(i,x)==1$,即
$gcd(i-x,x)==1$。
时间复杂度$O(\sqrt{n} )$.
「10.10」神炎皇(欧拉函数)·降雷皇(线段树,DP)·幻魔皇
原文:https://www.cnblogs.com/Wwb123/p/11647795.html