首页 > 其他 > 详细

向量叉积

时间:2019-10-06 16:17:55      阅读:101      评论:0      收藏:0      [点我收藏+]

向量叉积

定义

\[\vec a\times\vec b=|\vec a||\vec b|sin\theta\]

证明

技术分享图片

  • 证明:在如图所示的平行四边形0ACB中 \[S_{\Delta AOC}=\frac{1}{2}|\vec {a}||\vec b|sin \theta\]
  • 则平行四边形的面积是 \[S=|\vec{a}| |\vec b|sin\theta\]
    \[\vec a \cdot \vec b=|\vec a| |\vec b| cos \theta\]
    \[cos\theta=\frac{\vec a \cdot \vec b}{|\vec a| |\vec b|}\]

\[ \begin{eqnarray} sin\theta &= & \sqrt{1-cos^2\theta} \&=&\frac{\sqrt{(|\vec a|^2\cdot|\vec b|)^2-(\vec{a}\cdot{\vec{b})^2}}}{|\vec a||\vec b|} \\end{eqnarray} \]

\begin{eqnarray}
S &=& \sqrt{(|\vec a|^2\cdot|\vec b|)^2-(\vec{a}\cdot{\vec{b})^2}} \
&=& \sqrt{(x_1^2+y_1^2)(x_2^2+y_2^2)-(x_1x_2+y_1y_2)^2} \
&=& \sqrt{(x_1y_2)^2+(x_2y_1)^2-2x_1x_2y_1y_2} \
&=& \sqrt{(x_1y_2-x_2y_1)^2} \
&=& |x_1y_2-x_2y_1| \
\end{eqnarray}

向量叉积

原文:https://www.cnblogs.com/Vimin/p/11627515.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!