朴素贝叶斯方法是一组基于贝叶斯定理的监督学习算法,其“朴素”假设是:给定类变量值的每一对特征之间条件独立。贝叶斯定理描述了如下关系:
给定类变量\(y\)以及属性值向量\(x_1\)至\(x_n\):
\(P(y \mid x_1, \dots, x_n) = \frac{P(y) P(x_1, \dots x_n \mid y)} {P(x_1, \dots, x_n)}\)
依据朴素条件独立假设可得:
\(P(x_i | y, x_1, \dots, x_{i-1}, x_{i+1}, \dots, x_n) = P(x_i | y)\)
对 \(i\) 进行遍历,上式可化为:
\(P(y \mid x_1, \dots, x_n) = \frac{P(y) \prod_{i=1}^{n} P(x_i \mid y)} {P(x_1, \dots, x_n)}\)
由于输入的\(P(x_1, \dots, x_n)\)是给定的常数值,我们可以得到以下式子:
\(P(y \mid x_1, \dots, x_n) \propto P(y) \prod_{i=1}^{n} P(x_i \mid y)\)
\(\hat{y} = \arg\max_y P(y) \prod_{i=1}^{n} P(x_i \mid y)\)
scikit-learn 1.9.1-1.9.3 Gaussian/Multinomial/Complement Naive Bayes
【sklearn朴素贝叶斯算法】高斯分布/多项式/伯努利贝叶斯算法的区别以及代码实例 - 莺尾花分类
原文:https://www.cnblogs.com/yanqiang/p/11625619.html