??4 3
1 2 4
2 3 3
3 1 1
3
1 3
1 4
1 3
3
-1
3
对于30%的数据,1≤n≤1000,1≤m≤10000,1≤q≤1000
对于60%的数据,1≤n≤1000,1≤m≤50000,1≤q≤1000
对于100%的数据,1≤n≤10000,1≤m≤50000,1≤q≤30000,0≤z≤100000
题解思路
首先,如果两点之间某路径上最小的一条边不在该图的最大生成树上,那么在这个图中,一定有一条路径,其中每一条边的值都大于等于那条边的值。
所以只需要求出最大生成树后再用LCA维护最小值即可。
时间复杂度:O(nlogn)
#include<iostream>
#include<cstdio>
#include<algorithm>
using namespace std;
struct data{
int x,y,v;
}t[50001],d[20001];
int n,m,s[10001][21],f[10001][21],fa[10001],h[10001],cnt,fx,fy,ans,p[10001],id[10001],x,y;
bool cmp(data a,data b){
return a.v>b.v;
}
int father(int a){
if(fa[a]!=a)fa[a]=father(fa[a]);
return fa[a];
}
void add(int a,int b,int c){
cnt++;
d[cnt].x=b;
d[cnt].y=h[a];
d[cnt].v=c;
h[a]=cnt;
}
void dfs(int a){
for(int i=1;i<=20;i++){
f[a][i]=f[f[a][i-1]][i-1];
s[a][i]=min(s[a][i-1],s[f[a][i-1]][i-1]);
}
for(int i=h[a];i;i=d[i].y){
if(!p[d[i].x]){
p[d[i].x]=p[a]+1;
f[d[i].x][0]=a;
s[d[i].x][0]=d[i].v;
id[d[i].x]=id[a];
dfs(d[i].x);
}
}
}
void lca(int a,int b){
if(p[a]>p[b]){
for(int i=20;i>=0;i--){
if(p[f[a][i]]>=p[b]){
ans=min(ans,s[a][i]);
a=f[a][i];
}
}
}
if(p[a]<p[b]){
for(int i=20;i>=0;i--){
if(p[f[b][i]]>=p[a]){
ans=min(ans,s[b][i]);
b=f[b][i];
}
}
}
for(int i=20;i>=0;i--){
if(f[a][i]!=f[b][i]){
ans=min(ans,s[a][i]);
ans=min(ans,s[b][i]);
a=f[a][i];
b=f[b][i];
}
}
if(a!=b){
ans=min(ans,s[a][0]);
ans=min(ans,s[b][0]);
}
}
int main(){
scanf("%d%d",&n,&m);
for(int i=1;i<=m;i++)scanf("%d%d%d",&t[i].x,&t[i].y,&t[i].v);
for(int i=1;i<=n;i++)fa[i]=i;
sort(t+1,t+m+1,cmp);
for(int i=1;i<=m;i++){
fx=father(t[i].x);
fy=father(t[i].y);
if(fx!=fy){
fa[fx]=fy;
add(t[i].x,t[i].y,t[i].v);
add(t[i].y,t[i].x,t[i].v);
}
}
for(int i=1;i<=n;i++){
if(!id[i]){
p[i]=1;
id[i]=i;
dfs(i);
}
}
scanf("%d",&m);
for(int i=1;i<=m;i++){
ans=10000000;
scanf("%d%d",&x,&y);
if(id[x]==id[y]){
lca(x,y);
printf("%d\n",ans);
}else printf("-1\n");
}
}
原文:https://www.cnblogs.com/ez-syh/p/11615450.html