首页 > 其他 > 详细

用seaborn画出酷炫图形

时间:2019-09-23 15:14:04      阅读:120      评论:0      收藏:0      [点我收藏+]
Seaborn其实是在matplotlib的基础上进行了更高级的API封装,从而使得作图更加容易,Seaborn是matplotlib的补充,而不是替代物。
 
Seaborn有一下特点
  • 在Matplotlib上构建,支持numpy和pandas的数据结构可视化。
  • 可视化单一变量、二维变量用于比较数据集中各变量的分布情况
  • 可视化线性回归模型中的独立变量及不独立变量

数据集分布可视化单变量分布 sns.distplot()
# 单变量分布x1 = np.random.normal(size=1000)sns.distplot(x1);x2 = np.random.randint(0100500)sns.distplot(x2);

运行结果:
<ignore_js_op>技术分享图片
 
技术分享图片
技术分享图片

直方图 sns.distplot(kde=False)
# 直方图
sns.distplot(x1, bins=20, kde=False, rug=True)

运行结果:
<ignore_js_op>技术分享图片
技术分享图片


核密度估计 sns.distplot(hist=False) 或 sns.kdeplot()
# 核密度估计
sns.distplot(x2, hist=False, rug=True)

运行结果:
<ignore_js_op>技术分享图片
 
技术分享图片

联合绘图jointplot
# 散布图df_obj = pd.DataFrame({"x": np.random.randn(500), "y": np.random.randn(500)})散布图 sns.jointplot()
sns.jointplot(x="x", y="y", data=df_obj)

运行结果:
<ignore_js_op>技术分享图片
 
 
技术分享图片

二维直方图 Hexbin sns.jointplot(kind=‘hex’)
# 二维直方图
sns.jointplot(x="x", y="y", data=df_obj, kind="hex");

运行结果:
<ignore_js_op>技术分享图片
 
 
技术分享图片

kde等高图 sns.jointplot(kind=‘kde’)
# 核密度估计
sns.jointplot(x="x", y="y", data=df_obj, kind="kde");

运行结果:
<ignore_js_op>技术分享图片
 
 
技术分享图片

数据集中变量间关系可视化 sns.pairplot()
# 数据集中变量间关系可视化
dataset = sns.load_dataset("tips")
sns.pairplot(dataset);

运行结果:
<ignore_js_op>技术分享图片



对角线的直方图表示单个变量的分布,上三角和下三角表示两两变量的关系
好啦,今天的只是分享就到这里啦

 更多技术资讯可关注:gzitcast

用seaborn画出酷炫图形

原文:https://www.cnblogs.com/heimaguangzhou/p/11572310.html

(1)
(1)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!