转载自:https://www.cnblogs.com/chaosimple/p/3182157.html
方差和标准差一般用来描述一维数据
协方差用来描述二维数据
协方差矩阵用来描述二维及以上数据
协方差用来分析数据之间的相关性
为啥提期望呢,肯定是有关系的嘞。来来来,先简单回顾下数学期望相关的知识。
标准差和方差一般是用来描述一维数据的,但现实生活中我们常常会遇到含有多维数据的数据集,最简单的是大家上学时免不了要统计多个学科的考试成绩。面对这样的数据集,我们当然可以按照每一维独立的计算其方差,但是通常我们还想了解更多,比如,一个男孩子的猥琐程度跟他受女孩子的欢迎程度是否存在一些联系。协方差就是这样一种用来度量两个随机变量关系的统计量,我们可以仿照方差的定义:
来度量各个维度偏离其均值的程度,协方差可以这样来定义:
协方差的结果有什么意义呢?如果结果为正值,则说明两者是正相关的(从协方差可以引出“相关系数”的定义),也就是说一个人越猥琐越受女孩欢迎。如果结果为负值, 就说明两者是负相关,越猥琐女孩子越讨厌。如果为0,则两者之间没有关系,猥琐不猥琐和女孩子喜不喜欢之间没有关联,就是统计上说的“相互独立”。
从协方差的定义上我们也可以看出一些显而易见的性质,如:
前面提到的猥琐和受欢迎的问题是典型的二维问题,而协方差也只能处理二维问题,那维数多了自然就需要计算多个协方差,比如n维的数据集就需要计算个协方差,那自然而然我们会想到使用矩阵来组织这些数据。给出协方差矩阵的定义:
这个定义还是很容易理解的,我们可以举一个三维的例子,假设数据集有三个维度,则协方差矩阵为:
可见,协方差矩阵是一个对称的矩阵,而且对角线是各个维度的方差
其他博客:链接在这:http://blog.csdn.net/itplus/article/details/11452743
原文:https://www.cnblogs.com/qinxiaoqin/p/11499116.html