最近看到keras的官方GAN代码中有CGAN(全连接层)和卷积GAN(DCGAN),但他并没有给出“条件卷积GAN”,预测就把这两者结合了一下。虽然很多人用其他框架(e.g.TensorFlow)写出了条件卷积GAN,但代码没有keras简洁,作为keras爱好者,就做了简单地结合就完成了。
from __future__ import print_function, division from keras.datasets import mnist from keras.layers import Input, Dense, Reshape, Flatten, Dropout, multiply from keras.layers import BatchNormalization, Activation, Embedding,ZeroPadding2D from keras.layers.advanced_activations import LeakyReLU from keras.layers.convolutional import UpSampling2D, Conv2D from keras.models import Sequential, Model from keras.optimizers import Adam import matplotlib.pyplot as plt import numpy as np class CDCGAN(): def __init__(self): # Input shape self.img_rows = 28 self.img_cols = 28 self.channels = 1 self.img_shape = (self.img_rows, self.img_cols, self.channels) self.num_classes = 10 self.latent_dim = 100 optimizer = Adam(0.0002, 0.5) # Build and compile the discriminator self.discriminator = self.build_discriminator() self.discriminator.compile(loss=[‘binary_crossentropy‘], optimizer=optimizer, metrics=[‘accuracy‘]) # Build the generator self.generator = self.build_generator() # The generator takes noise and the target label as input # and generates the corresponding digit of that label noise = Input(shape=(self.latent_dim,)) label = Input(shape=(1,)) img = self.generator([noise, label]) # For the combined model we will only train the generator self.discriminator.trainable = False # The discriminator takes generated image as input and determines validity # and the label of that image valid = self.discriminator([img, label]) # The combined model (stacked generator and discriminator) # Trains generator to fool discriminator self.combined = Model([noise, label], valid) self.combined.compile(loss=[‘binary_crossentropy‘], optimizer=optimizer) def build_generator(self): model = Sequential() model.add(Dense(128 * 7 * 7, activation="relu", input_dim=self.latent_dim)) model.add(Reshape((7, 7, 128))) model.add(UpSampling2D()) model.add(Conv2D(128, kernel_size=3, padding="same")) model.add(BatchNormalization(momentum=0.8)) model.add(Activation("relu")) model.add(UpSampling2D()) model.add(Conv2D(64, kernel_size=3, padding="same")) model.add(BatchNormalization(momentum=0.8)) model.add(Activation("relu")) model.add(Conv2D(self.channels, kernel_size=3, padding="same")) model.add(Activation("tanh")) model.summary() noise = Input(shape=(self.latent_dim,)) label = Input(shape=(1,), dtype=‘int32‘) label_embedding = Flatten()(Embedding(self.num_classes, self.latent_dim)(label)) model_input = multiply([noise, label_embedding]) img = model(model_input) return Model([noise, label], img) def build_discriminator(self): model = Sequential() model.add(Dense(14*14*32, input_dim=np.prod(self.img_shape))) model.add(Reshape((14, 14, 32))) model.add(Conv2D(64, kernel_size=3, strides=2, padding="same")) model.add(ZeroPadding2D(padding=((0,1),(0,1)))) model.add(BatchNormalization(momentum=0.8)) model.add(LeakyReLU(alpha=0.2)) model.add(Dropout(0.25)) model.add(Conv2D(128, kernel_size=3, strides=2, padding="same")) model.add(BatchNormalization(momentum=0.8)) model.add(LeakyReLU(alpha=0.2)) model.add(Dropout(0.25)) model.add(Conv2D(256, kernel_size=3, strides=1, padding="same")) model.add(BatchNormalization(momentum=0.8)) model.add(LeakyReLU(alpha=0.2)) model.add(Dropout(0.25)) model.add(Flatten()) model.add(Dense(1, activation=‘sigmoid‘)) model.summary() img = Input(shape=self.img_shape) label = Input(shape=(1,), dtype=‘int32‘) label_embedding = Flatten()(Embedding(self.num_classes, np.prod(self.img_shape))(label)) flat_img = Flatten()(img) model_input = multiply([flat_img, label_embedding]) validity = model(model_input) return Model([img, label], validity) def train(self, epochs, batch_size=128, sample_interval=50): # Load the dataset (X_train, y_train), (_, _) = mnist.load_data() # Configure input X_train = (X_train.astype(np.float32) - 127.5) / 127.5 X_train = np.expand_dims(X_train, axis=3) y_train = y_train.reshape(-1, 1) # Adversarial ground truths valid = np.ones((batch_size, 1)) fake = np.zeros((batch_size, 1)) for epoch in range(epochs): # --------------------- # Train Discriminator # --------------------- # Select a random half batch of images idx = np.random.randint(0, X_train.shape[0], batch_size) imgs, labels = X_train[idx], y_train[idx] # Sample noise as generator input noise = np.random.normal(0, 1, (batch_size, 100)) # Generate a half batch of new images gen_imgs = self.generator.predict([noise, labels]) # Train the discriminator d_loss_real = self.discriminator.train_on_batch([imgs, labels], valid) d_loss_fake = self.discriminator.train_on_batch([gen_imgs, labels], fake) d_loss = 0.5 * np.add(d_loss_real, d_loss_fake) # --------------------- # Train Generator # --------------------- # Condition on labels sampled_labels = np.random.randint(0, 10, batch_size).reshape(-1, 1) # Train the generator g_loss = self.combined.train_on_batch([noise, sampled_labels], valid) # Plot the progress print ("%d [D loss: %f, acc.: %.2f%%] [G loss: %f]" % (epoch, d_loss[0], 100*d_loss[1], g_loss)) # If at save interval => save generated image samples if epoch % sample_interval == 0: self.sample_images(epoch) def sample_images(self, epoch): r, c = 2, 5 noise = np.random.normal(0, 1, (r * c, 100)) sampled_labels = np.arange(0, 10).reshape(-1, 1) #获取标签0,1,2,3,4,5,6,7,8,9。当然你可以把标签换成全部是1,这样子后续产生的数字也全是1 gen_imgs = self.generator.predict([noise, sampled_labels]) # Rescale images 0 - 1 gen_imgs = 0.5 * gen_imgs + 0.5 n = 10 # 根据标签,产生对应的数字。 plt.figure(figsize=(10, 2)) for i in range(n): ax = plt.subplot(1, n, i + 1) plt.imshow(gen_imgs[i].reshape(28, 28)) plt.gray() ax.get_xaxis().set_visible(False) ax.get_yaxis().set_visible(False) plt.show() plt.close() if __name__ == ‘__main__‘: cdcgan = CDCGAN() cdgan.train(epochs=2000, batch_size=32, sample_interval=100)
参考的两个代码:
1. https://github.com/eriklindernoren/Keras-GAN/blob/master/dcgan/dcgan.py
2. https://github.com/eriklindernoren/Keras-GAN/blob/master/cgan/cgan.py
原文:https://www.cnblogs.com/nanhaijindiao/p/11495426.html