val lines1 = ssc.socketTextStream("master", 9998, StorageLevel.MEMORY_AND_DISK_SER)
val lines2 = ssc.socketTextStream("master", 9997, StorageLevel.MEMORY_AND_DISK_SER)
val lines = lines1.union(lines2)
lines.repartition(100) //通过repartition设置
//处理的逻辑,就是简单的进行word count
val words = lines.repartition(100).flatMap(_.split(" "))
//自己设置决定ShuffleRDD的分区数 以及分区算法,默认是core的数量
val wordCounts = words.map(x => (x, 1)).reduceByKey((a: Int, b: Int) => a + b, new HashPartitioner(10)) //并发度是10个分区,根据集群资源情况调节
import com.esotericsoftware.kryo.Kryo
import org.apache.spark.serializer.KryoRegistrator
import org.apache.spark.storage.StorageLevel
import org.apache.spark.streaming.{Seconds, StreamingContext}
import org.apache.spark.{SparkConf, SparkContext}
/**
* WordCount程序,Spark Streaming消费TCP Server发过来的实时数据的例子:
*
* 1、在master服务器上启动一个Netcat server
* `$ nc -lk 9998` (如果nc命令无效的话,我们可以用yum install -y nc来安装nc)
*
* 2、用下面的命令在在集群中将Spark Streaming应用跑起来
* spark-submit --class com.twq.wordcount.JavaNetworkWordCount * --master spark://master:7077 * --deploy-mode client * --driver-memory 512m * --executor-memory 512m * --total-executor-cores 4 * --executor-cores 2 * /home/hadoop-twq/spark-course/streaming/spark-streaming-basic-1.0-SNAPSHOT.jar
*/
object KryoNetworkWordCount {
def main(args: Array[String]) {
val sparkConf = new SparkConf().setAppName("KryoNetworkWordCount")
sparkConf.set("spark.serializer", "org.apache.spark.serializer.KryoSerializer") //指定spark.serializer.KryoSerializer
sparkConf.set("spark.kryo.registrator", "com.twq.spark.rdd.example.ClickTrackerKryoRegistrator") // 自定义的数据类型通过Kryo序列化
val sc = new SparkContext(sparkConf)
// Create the context with a 1 second batch size
val ssc = new StreamingContext(sc, Seconds(1))
//如果一个batchInterval中的数据量不大,并且没有window等操作,则可以使用MEMORY_ONLY
val lines = ssc.socketTextStream("master", 9998, StorageLevel.MEMORY_ONLY_SER)
//处理的逻辑,就是简单的进行word count
val words = lines.flatMap(_.split(" "))
val wordCounts = words.map(x => (x, 1)).reduceByKey(_ + _)
//将结果输出到控制台
wordCounts.print()
//启动Streaming处理流
ssc.start()
//等待Streaming程序终止
ssc.awaitTermination()
}
}
class ClickTrackerKryoRegistrator extends KryoRegistrator {
override def registerClasses(kryo: Kryo): Unit = {
kryo.register(classOf[TrackerLog])
}
}
case class TrackerLog(id: String, name: String)
原文:https://www.cnblogs.com/tesla-turing/p/11488346.html