首页 > 系统服务 > 详细

机器翻译(machine translation)相关

时间:2019-09-05 12:18:46      阅读:94      评论:0      收藏:0      [点我收藏+]

1.BLEU

主要任务是为了将候选的n-gram和target的n-gram相比较,匹配相似度(与位置无关)

基本做法:比较翻译结果中和参考的n-gram个数,直接相除,问题是长句子会得分更高,限制句子长度加入惩罚参数,同时对不同的目标任务对n-gram赋予不同的权重

技术分享图片

 

2.attention 的细节总结

注意力机制目的是达到一个对齐(alignment)的作用,通俗来说就是得到输出与输入的那些位置有关,相关性有多大

第一部分参考资料http://bitjoy.net/2019/08/02/cs224n%ef%bc%881-31%ef%bc%89translation-seq2seq-attention/

具体的做法是对于每一个输入的部分获得query key value三个变量,q,k用来比较相似性获取相关性,v用来传输输入的值,但实际上出了self-attention以外,其他的注意力机制中一般的qkv使用同一个向量。

技术分享图片

 

 在计算出新的表示后,可以用新的表示来预测当前时刻的输出,下一个时刻的输入既可以使用上一时刻的h,也可以使用利用attention构建得到的新向量。

上文中计算得分score是直接使用数乘来表示相似性(其中的理由是这对齐到的部分应该表示相近的语义),但仍有其他的方式去计算相关的score。

常用的其实就是三种,

技术分享图片

 

后续增加bert中self-attention的具体实现细节。

 

机器翻译(machine translation)相关

原文:https://www.cnblogs.com/wb-learn/p/11458090.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!