首页 > 编程语言 > 详细

Python Tutorial: Unsupervised Machine Learning

时间:2019-09-01 22:34:53      阅读:158      评论:0      收藏:0      [点我收藏+]

7.1 KMeans Clustering

iris = pd.read_csv(‘/Users/iris.csv‘)
iris["Species"] = np.where(iris["Target"] == 0, "Setosa",
np.where(iris["Target"] == 1, "Versicolor", "Virginica"))
features = pd.concat([iris["PetalLength"], iris["PetalWidth"],
iris["SepalLength"], iris["SepalWidth"]], axis = 1)
from sklearn.cluster import KMeans
kmeans = KMeans(n_clusters = 3, random_state = 29).fit(features)
print(pd.crosstab(index = iris["Species"], columns = kmeans.labels_))

7.2 Spectral Clustering

from sklearn.cluster import SpectralClustering
spectral = SpectralClustering(n_clusters = 3,random_state = 29).fit(features)
print(pd.crosstab(index = iris["Species"], columns = spectral.labels_))

7.3 Ward Hierarchical Clustering

from sklearn.cluster import AgglomerativeClustering
aggl = AgglomerativeClustering(n_clusters = 3).fit(features)
print(pd.crosstab(index = iris["Species"], columns = aggl.labels_))

7.3 Ward Hierarchical Clustering

from sklearn.cluster import AgglomerativeClustering
aggl = AgglomerativeClustering(n_clusters = 3).fit(features)
print(pd.crosstab(index = iris["Species"], columns = aggl.labels_))

7.4 DBSCAN

from sklearn.cluster import DBSCAN
dbscan = DBSCAN().fit(features)
print(pd.crosstab(index = iris["Species"], columns = dbscan.labels_))

7.5 Self-organizing map

from pyclustering.nnet import som
sm = som.som(4,4)
sm.train(features.as_matrix(), 100)
sm.show_distance_matrix()

 

Python Tutorial: Unsupervised Machine Learning

原文:https://www.cnblogs.com/nuswgg95528736/p/8031272.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!