首页 > 其他 > 详细

对称性——cf405d

时间:2019-08-30 20:15:14      阅读:64      评论:0      收藏:0      [点我收藏+]

以后碰到这种题就应该往对称性想:设x的对称数x‘是1e6-x+1

对于任意一组对称数x+x‘-2=1e6-1,2e6-(x+x‘)=1e6-1,即X集合Y集合同时加上任意一组对称数都是可以的

枚举每个xi,如果其对称数1e6-xi+1不在集合X中,那么在Y中添加这个对称数即可,正确性显然

反之如果对称数在集合X中,则X集合的和多了1e6,我们再去找一组不在集合中的对称数,将这组数加入集合Y中,等价于Y集合的数和也多了1e6

#include <bits/stdc++.h>
#define maxn 2000010
#define maxm 110
using namespace std;
int S, n, m, a[maxn], vis[maxn], ans[maxn], v[maxn];

inline int read(){
    int s = 0, w = 1;
    char c = getchar();
    for (; !isdigit(c); c = getchar()) if (c == -) w = -1;
    for (; isdigit(c); c = getchar()) s = (s << 1) + (s << 3) + (c ^ 48);
    return s * w;
}

int main(){
    S = 1000000, n = read();
    for (int i = 1; i <= n; ++i) a[i] = read(), v[a[i]] = 1;
    for (int i = 1, j = 1; i <= n; ++i){
        if (vis[a[i]]) continue;
        if (!v[S + 1 - a[i]]) ans[++m] = S + 1 - a[i]; else{
            while (v[j] || v[S + 1 - j]) ++j;
            ans[++m] = j, ans[++m] = S + 1 - j;
            vis[S + 1 - a[i]] = 1;
            ++j;
        }
    }
    printf("%d\n", m);
    for (int i = 1; i <= m; ++i) printf("%d ", ans[i]);
    return 0;
}

 

对称性——cf405d

原文:https://www.cnblogs.com/zsben991126/p/11436555.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!