首页 > 其他 > 详细

pytorch基础问题

时间:2019-08-18 17:17:36      阅读:122      评论:0      收藏:0      [点我收藏+]

本文将自己在pytorch学习中遇见的各种问题整理起来,并且持续更新。

1:torch.Tensor和torch.tensor的区别

 开始使用torch.tensor和torch.Tensor的时候发现结果都是一样的。都能生成新的张量。但根源上是有差别的。

import  torch
n=torch.tensor([[3,4],[1,2]])
x=torch.Tensor([[3,4],[1,2]])
print(n,|||,x)
print(n.shape,|||,x.shape)
print(n.type(),|||,x.type())
‘‘‘
tensor([[3, 4],
        [1, 2]]) ||| tensor([[3., 4.],
        [1., 2.]])
torch.Size([2, 2]) ||| torch.Size([2, 2])
torch.LongTensor ||| torch.FloatTensor
‘‘‘

torch.Tensor()是Python类,更明确的说,是默认张量类型torch.FloatTensor()的别名,调用Tensor类的构造函数__init__,生成单精度浮点类型的张量。

orch.tensor()仅仅是Python的函数,函数原型:

torch.tensor(data, dtype=None, device=None, requires_grad=False)

data可以是:list, tuple, array, scalar等类型。拷贝data中的数据部分,根据原始数据类型生成相应的torch.LongTensor,torch.FloatTensor,torch.DoubleTenso

 注:torch.tensor不能直接定义维度:torch.tensor(5,3)是错误的。

pytorch基础问题

原文:https://www.cnblogs.com/carrollCN/p/11365151.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!