首页 > 编程语言 > 详细

树状数组详解与模版

时间:2019-08-13 15:18:11      阅读:69      评论:0      收藏:0      [点我收藏+]

 

单点更新

void update(int x,int y,int n){
    for(int i=x;i<=n;i+=lowbit(i))    //x为更新的位置,y为更新后的数,n为数组最大值
        c[i] += y;
}

 

区间查询(1 - x)

int getsum(int x){
    int ans = 0;
    for(int i=x;i;i-=lowbit(i))
        ans += c[i];
    return ans;
}

高级操作

求逆序对

对于数组a,我们将其离散化处理为b[].区间查询与单点修改代码如下

void update(int p)
{
    while(p<=n)
    {
        a[p] ++;
        p+=lowbit(p);
    }
}
 
int getsum(int p)
{
    int res = 0;
    while(p)
        res += a[p],p -= lowbit(p);
    return res;
}

a的逆序对个数为:

for(int i=1;i<=n;i++){
    update(b[i]+1);
    res += i-getsum(b[i]+1);
}

res就是逆序对个数,ask,需注意b[i]应该大于0

 

求区间最大值

void Update(int i,int v)
{
    while(i<=maxY)
    {
        t[i] = max(t[i],v);
        i += lowbit(i);
    }
}
int query(int i)
{
    int ans = 0;
    while(i)
    {
        ans = max(ans,t[i]);
        i -= lowbit(i);
    }
    return ans;
}

 

技术分享图片

 

int lowbit(int x) {
    return x & -x;
}
void add(int p,int x) {    //这个函数用来在树状数组中直接修改
    while(p <= n) {
        c[p] += x;
        p += lowbit(p);
    }
}

void range_add(int l,int r,int x) {  //给区间[l, r]加上x
    add(l,x);
    add(r + 1, -x);
}
int ask(int p) {  //单点查询
    int res = 0;
    while(p) {
        res += c[p];
        p -= lowbit(p);
    }
    return res;
}

 

技术分享图片

void add(ll p, ll x){
    for(int i = p; i <= n; i += i & -i)
        sum1[i] += x, sum2[i] += x * p;
}
void range_add(ll l, ll r, ll x){
    add(l, x), add(r + 1, -x);
}
ll ask(ll p){
    ll res = 0;
    for(int i = p; i; i -= i & -i)
        res += (p + 1) * sum1[i] - sum2[i];
    return res;
}
ll range_ask(ll l, ll r){
    return ask(r) - ask(l - 1);
}

用这个做区间修改区间求和的题,无论是时间上还是空间上都比带lazy标记的线段树要优。

 技术分享图片

void add(int x, int y, int z){ //将点(x, y)加上z
    int memo_y = y;
    while(x <= n){
        y = memo_y;
        while(y <= n)
            tree[x][y] += z, y += y & -y;
        x += x & -x;
    }
}
void ask(int x, int y){//求左上角为(1,1)右下角为(x,y) 的矩阵和
    int res = 0, memo_y = y;
    while(x){
        y = memo_y;
        while(y)
            res += tree[x][y], y -= y & -y;
        x -= x & -x;
    }
}

技术分享图片

void add(int x, int y, int z){ 
    int memo_y = y;
    while(x <= n){
        y = memo_y;
        while(y <= n)
            tree[x][y] += z, y += y & -y;
        x += x & -x;
    }
}
void range_add(int xa, int ya, int xb, int yb, int z){
    add(xa, ya, z);
    add(xa, yb + 1, -z);
    add(xb + 1, ya, -z);
    add(xb + 1, yb + 1, z);
}
void ask(int x, int y){
    int res = 0, memo_y = y;
    while(x){
        y = memo_y;
        while(y)
            res += tree[x][y], y -= y & -y;
        x -= x & -x;
    }
}

技术分享图片

#include <cstdio>
#include <cmath>
#include <cstring>
#include <algorithm>
#include <iostream>
using namespace std;
typedef long long ll;
ll read(){
    char c; bool op = 0;
    while((c = getchar()) < 0 || c > 9)
        if(c == -) op = 1;
    ll res = c - 0;
    while((c = getchar()) >= 0 && c <= 9)
        res = res * 10 + c - 0;
    return op ? -res : res;
}
const int N = 205;
ll n, m, Q;
ll t1[N][N], t2[N][N], t3[N][N], t4[N][N];
void add(ll x, ll y, ll z){
    for(int X = x; X <= n; X += X & -X)
        for(int Y = y; Y <= m; Y += Y & -Y){
            t1[X][Y] += z;
            t2[X][Y] += z * x;
            t3[X][Y] += z * y;
            t4[X][Y] += z * x * y;
        }
}
void range_add(ll xa, ll ya, ll xb, ll yb, ll z){ //(xa, ya) 到 (xb, yb) 的矩形
    add(xa, ya, z);
    add(xa, yb + 1, -z);
    add(xb + 1, ya, -z);
    add(xb + 1, yb + 1, z);
}
ll ask(ll x, ll y){
    ll res = 0;
    for(int i = x; i; i -= i & -i)
        for(int j = y; j; j -= j & -j)
            res += (x + 1) * (y + 1) * t1[i][j]
                - (y + 1) * t2[i][j]
                - (x + 1) * t3[i][j]
                + t4[i][j];
    return res;
}
ll range_ask(ll xa, ll ya, ll xb, ll yb){
    return ask(xb, yb) - ask(xb, ya - 1) - ask(xa - 1, yb) + ask(xa - 1, ya - 1);
}
int main(){
    n = read(), m = read(), Q = read();
    for(int i = 1; i <= n; i++){
        for(int j = 1; j <= m; j++){
            ll z = read();
            range_add(i, j, i, j, z);
        }
    }
    while(Q--){
        ll ya = read(), xa = read(), yb = read(), xb = read(), z = read(), a = read();
        if(range_ask(xa, ya, xb, yb) < z * (xb - xa + 1) * (yb - ya + 1))
            range_add(xa, ya, xb, yb, a);
    }
    for(int i = 1; i <= n; i++){
        for(int j = 1; j <= m; j++)
            printf("%lld ", range_ask(i, j, i, j));
        putchar(\n);
    }
    return 0;
}

 

树状数组详解与模版

原文:https://www.cnblogs.com/smallhester/p/11345721.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!