首页 > 编程语言 > 详细

Infinite Inversions(树状数组+离散化)

时间:2019-08-06 23:29:12      阅读:87      评论:0      收藏:0      [点我收藏+]

思路及代码参考:https://blog.csdn.net/u014800748/article/details/45420085

There is an infinite sequence consisting of all positive integers in the increasing order: p = {1, 2, 3, ...}. We performed n swap operations with this sequence. A swap(a, b) is an operation of swapping the elements of the sequence on positions aand b. Your task is to find the number of inversions in the resulting sequence, i.e. the number of such index pairs (i, j), that i < j and pi > pj.

Input

The first line contains a single integer n (1 ≤ n ≤ 105) — the number of swapoperations applied to the sequence.

Each of the next n lines contains two integers ai and bi (1 ≤ ai, bi ≤ 109ai ≠ bi) — the arguments of the swap operation.

Output

Print a single integer — the number of inversions in the resulting sequence.

Examples

Input
2
4 2
1 4
Output
4
Input
3
1 6
3 4
2 5
Output
15

Note

In the first sample the sequence is being modified as follows: 技术分享图片. It has 4 inversions formed by index pairs (1, 4), (2, 3), (2, 4) and (3, 4).

代码:

#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
#include<queue>
#include<stack>
#include<set>
#include<vector>
#include<cmath>
const int maxn=2e5+5;
typedef long long ll;
using namespace std;

ll s[maxn],sum[maxn];
int ss[maxn];
int a[maxn],b[maxn],pos[maxn];
int lowbit(int x)
{
    return x&(-x);
}
int n;
void update(int pos,int ad)
{
    while(pos<=maxn)
    {
        s[pos]+=ad;
        pos+=lowbit(pos);
    }
}
ll getnum(int pos)
{
    ll res=0;
    while(pos>0)
    {
        res+=s[pos];
        pos-=lowbit(pos);
    }
    return res;
}
int main()
{
    int n;
    while (~scanf("%d", &n))
    {
        for (int i = 1; i <= n; i++)
        {
            scanf("%d%d", &a[i], &b[i]);
            ss[i] = a[i]; 
            ss[i + n] = b[i];
            pos[i] = i; 
            pos[i + n] = i + n;
        }
        sort(ss + 1, ss + 2 * n + 1);
        ss[0] = 0;
        int cnt = 0;
        for (int i = 1; i <= 2 * n;i++)
        if (i == 1 || ss[i] != ss[i - 1])
            ss[++cnt] = ss[i];
        sum[0] = 0;
        for (int i = 1; i <= cnt; i++)
            sum[i] = sum[i - 1] + ss[i] - ss[i - 1] - 1;
        for (int i = 1; i <= n; i++)
        {
            int aa = lower_bound(ss + 1, ss + cnt + 1, a[i]) - ss;
            int bb = lower_bound(ss + 1,ss + cnt + 1, b[i]) - ss;
            swap(pos[aa], pos[bb]);
        }
        memset(s, 0, sizeof(s));
        ll ans = 0;
        for (int i = cnt; i; i--)
        {
            ans += getnum(pos[i]);
            ans += abs(sum[i]-sum[pos[i]]);
            update(pos[i], 1);
        }
        printf("%lld\n", ans);
    }

   return 0;
}

 

Infinite Inversions(树状数组+离散化)

原文:https://www.cnblogs.com/Staceyacm/p/11312245.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!