堆的概念:堆是一种图的树状结构,被用于实现“优先队列”。
1.首先创建堆:
堆的特性:
(1).完全二叉树;
(2).每一个节点都大于其左右子节点;
(3).根节点最大(大堆);
(4).左子节点2i+1,由子节点2i+2,父节点(i-1)/2;
package main
import "fmt"
func parentNode(i int) int{
return (i - 1)/2
}
//左节点
func leftNode(i int) int{
return 2*i + 1
}
//右节点
func rightNode(i int) int{
return 2*i + 2
}
//创建heap
func buildHeap(heap []int) {
length := len(heap)
for i := length/2 - 1; i >= 0; i-- {
maxHeap(heap, i, length)
}
}
func maxHeap(heap []int, i int, length int) {
left := leftNode(i)
right := rightNode(i)
largest := 0
if left < length && heap[left] > heap[i] {
largest = left
}else {
largest = i
}
if right < length && heap[right] > heap[largest] {
largest = right
}
if largest != i {
heap[i], heap[largest] = heap[largest], heap[i]
//需要继续比较其父节点
maxHeap(heap, largest, length)
}
}
func main() {
a := []int{1, 24, 35, 343, 463, 46, 34, 35, 12, 123, 245, 413, 5, 132}
buildHeap(a)
fmt.Println(a)
}
2.堆排序
package main
import "fmt"
//堆的特性
//1.是完全二叉树
//2.每一个节点都大于子节点(大堆)
//3.根节点最大
//4.左子节点2i+1, 由子节点2i+2, 父节点(i-1)/2
func parentNode(i int) int{
return (i - 1)/2
}
//左节点
func leftNode(i int) int{
return 2*i + 1
}
//右节点
func rightNode(i int) int{
return 2*i + 2
}
//创建heap
func buildHeap(heap []int) int{
length := len(heap)
for i := length/2 - 1; i >= 0; i-- {
maxHeap(heap, i, length)
}
return length
}
func maxHeap(heap []int, i int, length int) {
left := leftNode(i)
right := rightNode(i)
largest := 0
if left < length && heap[left] > heap[i] {
largest = left
}else {
largest = i
}
if right < length && heap[right] > heap[largest] {
largest = right
}
if largest != i {
heap[i], heap[largest] = heap[largest], heap[i]
//需要继续比较起父节点
maxHeap(heap, largest, length)
}
}
func main() {
a := []int{1, 24, 35, 343, 463, 46, 34, 35, 12, 123, 245, 413, 5, 132}
heapLength := buildHeap(a)
fmt.Println(a)
for i := len(a) - 1; i >= 0; i-- {
a[i], a[0] = a[0], a[i]
heapLength--
maxHeap(a, 0, heapLength)
}
fmt.Println(a)
}
原文:https://www.cnblogs.com/xingyunshizhe/p/11311754.html