仅做记录,后面慢慢整理
训练函数:
from skimage import io, transform # skimage模块下的io transform(图像的形变与缩放)模块 import glob # glob 文件通配符模块 import os # os 处理文件和目录的模块 import tensorflow as tf import numpy as np # 多维数据处理模块 import time # 数据集地址 path = ‘E:/tensor_data/powerpoint/test_database/‘ # 模型保存地址 model_path = ‘E:/tensor_data/powerpoint/model/fc_model.ckpt‘ # 将所有的图片resize成100*100 w = 100 h = 100 c = 3 print("开始执行读取图片和数据处理") # 读取图片+数据处理 def read_img(path): # os.listdir(path) 返回path指定的文件夹包含的文件或文件夹的名字的列表 # os.path.isdir(path)判断path是否是目录 # b = [x+x for x in list1 if x+x<15 ] 列表生成式,循环list1,当if为真时,将x+x加入列表b print(os.listdir(path)) ‘‘‘for x in os.listdir(path): if os.path.isdir(path+x): print(x)‘‘‘ cate = [path + x for x in os.listdir(path) if os.path.isdir(path + x)] print("数据集地址:"+path) imgs = [] labels = [] for idx, folder in enumerate(cate): # glob.glob(s+‘*.py‘) 从目录通配符搜索中生成文件列表 for im in glob.glob(folder + ‘/*.jpg‘): # 输出读取的图片的名称 print(‘reading the images:%s‘ % (im)) # io.imread(im)读取单张RGB图片 skimage.io.imread(fname,as_grey=True)读取单张灰度图片 # 读取的图片 img = io.imread(im) # skimage.transform.resize(image, output_shape)改变图片的尺寸 img = transform.resize(img, (w, h)) # 将读取的图片数据加载到imgs[]列表中 imgs.append(img) # 将图片的label加载到labels[]中,与上方的imgs索引对应 labels.append(idx) # 将读取的图片和labels信息,转化为numpy结构的ndarr(N维数组对象(矩阵))数据信息 return np.asarray(imgs, np.float32), np.asarray(labels, np.int32) # 调用读取图片的函数,得到图片和labels的数据集 data, label = read_img(path) # 打乱顺序 # 读取data矩阵的第一维数(图片的个数) num_example = data.shape[0] # 产生一个num_example范围,步长为1的序列 arr = np.arange(num_example) # 调用函数,打乱顺序 np.random.shuffle(arr) # 按照打乱的顺序,重新排序 data = data[arr] label = label[arr] # 将所有数据分为训练集和验证集 ratio = 0.8 s = np.int(num_example * ratio) x_train = data[:s] y_train = label[:s] x_val = data[s:] y_val = label[s:] # -----------------构建网络---------------------- # 本程序cnn网络模型,共有7层,前三层为卷积层,后三层为全连接层,前三层中,每层包含卷积、激活、池化层 # 占位符设置输入参数的大小和格式 x = tf.placeholder(tf.float32, shape=[None, w, h, c], name=‘x‘) y_ = tf.placeholder(tf.int32, shape=[None, ], name=‘y_‘) def inference(input_tensor, train, regularizer): # -----------------------第一层---------------------------- with tf.variable_scope(‘layer1-conv1‘): # 初始化权重conv1_weights为可保存变量,大小为5x5,3个通道(RGB),数量为32个 conv1_weights = tf.get_variable("weight", [5, 5, 3, 32], initializer=tf.truncated_normal_initializer(stddev=0.1)) # 初始化偏置conv1_biases,数量为32个 conv1_biases = tf.get_variable("bias", [32], initializer=tf.constant_initializer(0.0)) # 卷积计算,tf.nn.conv2d为tensorflow自带2维卷积函数,input_tensor为输入数据, # conv1_weights为权重,strides=[1, 1, 1, 1]表示左右上下滑动步长为1,padding=‘SAME‘表示输入和输出大小一样,即补0 conv1 = tf.nn.conv2d(input_tensor, conv1_weights, strides=[1, 1, 1, 1], padding=‘SAME‘) # 激励计算,调用tensorflow的relu函数 relu1 = tf.nn.relu(tf.nn.bias_add(conv1, conv1_biases)) with tf.name_scope("layer2-pool1"): # 池化计算,调用tensorflow的max_pool函数,strides=[1,2,2,1],表示池化边界,2个对一个生成,padding="VALID"表示不操作。 pool1 = tf.nn.max_pool(relu1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding="VALID") # -----------------------第二层---------------------------- with tf.variable_scope("layer3-conv2"): # 同上,不过参数的有变化,根据卷积计算和通道数量的变化,设置对应的参数 conv2_weights = tf.get_variable("weight", [5, 5, 32, 64], initializer=tf.truncated_normal_initializer(stddev=0.1)) conv2_biases = tf.get_variable("bias", [64], initializer=tf.constant_initializer(0.0)) conv2 = tf.nn.conv2d(pool1, conv2_weights, strides=[1, 1, 1, 1], padding=‘SAME‘) relu2 = tf.nn.relu(tf.nn.bias_add(conv2, conv2_biases)) with tf.name_scope("layer4-pool2"): pool2 = tf.nn.max_pool(relu2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding=‘VALID‘) # -----------------------第三层---------------------------- # 同上,不过参数的有变化,根据卷积计算和通道数量的变化,设置对应的参数 with tf.variable_scope("layer5-conv3"): conv3_weights = tf.get_variable("weight", [3, 3, 64, 128], initializer=tf.truncated_normal_initializer(stddev=0.1)) conv3_biases = tf.get_variable("bias", [128], initializer=tf.constant_initializer(0.0)) conv3 = tf.nn.conv2d(pool2, conv3_weights, strides=[1, 1, 1, 1], padding=‘SAME‘) relu3 = tf.nn.relu(tf.nn.bias_add(conv3, conv3_biases)) with tf.name_scope("layer6-pool3"): pool3 = tf.nn.max_pool(relu3, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding=‘VALID‘) # -----------------------第四层---------------------------- # 同上,不过参数的有变化,根据卷积计算和通道数量的变化,设置对应的参数 with tf.variable_scope("layer7-conv4"): conv4_weights = tf.get_variable("weight", [3, 3, 128, 128], initializer=tf.truncated_normal_initializer(stddev=0.1)) conv4_biases = tf.get_variable("bias", [128], initializer=tf.constant_initializer(0.0)) conv4 = tf.nn.conv2d(pool3, conv4_weights, strides=[1, 1, 1, 1], padding=‘SAME‘) relu4 = tf.nn.relu(tf.nn.bias_add(conv4, conv4_biases)) with tf.name_scope("layer8-pool4"): pool4 = tf.nn.max_pool(relu4, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding=‘VALID‘) nodes = 6 * 6 * 128 reshaped = tf.reshape(pool4, [-1, nodes]) # 使用变形函数转化结构 # -----------------------第五层--------------------------- with tf.variable_scope(‘layer9-fc1‘): # 初始化全连接层的参数,隐含节点为1024个 fc1_weights = tf.get_variable("weight", [nodes, 1024], initializer=tf.truncated_normal_initializer(stddev=0.1)) if regularizer != None: tf.add_to_collection(‘losses‘, regularizer(fc1_weights)) # 正则化矩阵 fc1_biases = tf.get_variable("bias", [1024], initializer=tf.constant_initializer(0.1)) # 使用relu函数作为激活函数 fc1 = tf.nn.relu(tf.matmul(reshaped, fc1_weights) + fc1_biases) # 采用dropout层,减少过拟合和欠拟合的程度,保存模型最好的预测效率 if train: fc1 = tf.nn.dropout(fc1, 0.5) # -----------------------第六层---------------------------- with tf.variable_scope(‘layer10-fc2‘): # 同上,不过参数的有变化,根据卷积计算和通道数量的变化,设置对应的参数 fc2_weights = tf.get_variable("weight", [1024, 512], initializer=tf.truncated_normal_initializer(stddev=0.1)) if regularizer != None: tf.add_to_collection(‘losses‘, regularizer(fc2_weights)) fc2_biases = tf.get_variable("bias", [512], initializer=tf.constant_initializer(0.1)) fc2 = tf.nn.relu(tf.matmul(fc1, fc2_weights) + fc2_biases) if train: fc2 = tf.nn.dropout(fc2, 0.5) # -----------------------第七层---------------------------- with tf.variable_scope(‘layer11-fc3‘): # 同上,不过参数的有变化,根据卷积计算和通道数量的变化,设置对应的参数 fc3_weights = tf.get_variable("weight", [512, 5], initializer=tf.truncated_normal_initializer(stddev=0.1)) if regularizer != None: tf.add_to_collection(‘losses‘, regularizer(fc3_weights)) fc3_biases = tf.get_variable("bias", [5], initializer=tf.constant_initializer(0.1)) logit = tf.add(tf.matmul(fc2, fc3_weights), fc3_biases, name="output") # matmul矩阵相乘 # 返回最后的计算结果 return logit # ---------------------------网络结束--------------------------- # 设置正则化参数为0.0001 regularizer = tf.contrib.layers.l2_regularizer(0.0001) # 将上述构建网络结构引入 logits = inference(x, False, regularizer) # (小处理)将logits乘以1赋值给logits_eval,定义name,方便在后续调用模型时通过tensor名字调用输出tensor b = tf.constant(value=1, dtype=tf.float32) logits_eval = tf.multiply(logits, b, name=‘logits_eval‘) # b为1 # 设置损失函数,作为模型训练优化的参考标准,loss越小,模型越优 loss = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits, labels=y_) # 设置整体学习率为α为0.001 train_op = tf.train.AdamOptimizer(learning_rate=0.001).minimize(loss) # 设置预测精度 correct_prediction = tf.equal(tf.cast(tf.argmax(logits, 1), tf.int32), y_) acc = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) # 定义一个函数,按批次取数据 def minibatches(inputs=None, targets=None, batch_size=None, shuffle=False): assert len(inputs) == len(targets) if shuffle: indices = np.arange(len(inputs)) np.random.shuffle(indices) for start_idx in range(0, len(inputs) - batch_size + 1, batch_size): if shuffle: excerpt = indices[start_idx:start_idx + batch_size] else: excerpt = slice(start_idx, start_idx + batch_size) yield inputs[excerpt], targets[excerpt] # 训练和测试数据,可将n_epoch设置更大一些 # 迭代次数 n_epoch = 20#10 # 每次迭代输入的图片数据 batch_size = 64 saver = tf.train.Saver(max_to_keep=4) # 可以指定保存的模型个数,利用max_to_keep=4,则最终会保存4个模型( with tf.Session() as sess: # 初始化全局参数 sess.run(tf.global_variables_initializer()) # 开始迭代训练,调用的都是前面设置好的函数或变量 for epoch in range(n_epoch): start_time = time.time() # training#训练集 train_loss, train_acc, n_batch = 0, 0, 0 for x_train_a, y_train_a in minibatches(x_train, y_train, batch_size, shuffle=True): _, err, ac = sess.run([train_op, loss, acc], feed_dict={x: x_train_a, y_: y_train_a}) train_loss += err; train_acc += ac; n_batch += 1 print(" train loss: %f" % (np.sum(train_loss) / n_batch)) print(" train acc: %f" % (np.sum(train_acc) / n_batch)) # validation#验证集 val_loss, val_acc, n_batch = 0, 0, 0 for x_val_a, y_val_a in minibatches(x_val, y_val, batch_size, shuffle=False): err, ac = sess.run([loss, acc], feed_dict={x: x_val_a, y_: y_val_a}) val_loss += err; val_acc += ac; n_batch += 1 print(" validation loss: %f" % (np.sum(val_loss) / n_batch)) print(" validation acc: %f" % (np.sum(val_acc) / n_batch)) # 保存模型及模型参数 if epoch % 2 == 0: saver.save(sess, model_path, global_step=epoch) print(sess.graph.name_scope)
测试代码:
from skimage import io, transform import tensorflow as tf import numpy as np import os # os 处理文件和目录的模块 import glob # glob 文件通配符模块 # 此程序作用于进行简单的预测,取5个图片来进行预测,如果有多数据预测,按照cnn.py中,读取数据的方式即可 path = ‘E:/tensor_data/powerpoint/test_powerpoint/‘ # 类别代表字典 flower_dict = {0: ‘其他‘, 1: ‘文档‘, 2: ‘幻灯片‘, 3: ‘黑板‘, 4: ‘不可能出现的类别‘} w = 100 h = 100 c = 3 # 读取图片+数据处理 def read_img(path): # os.listdir(path) 返回path指定的文件夹包含的文件或文件夹的名字的列表 # os.path.isdir(path)判断path是否是目录 # b = [x+x for x in list1 if x+x<15 ] 列表生成式,循环list1,当if为真时,将x+x加入列表b cate = [path + x for x in os.listdir(path) if os.path.isdir(path + x)] imgs = [] for idx, folder in enumerate(cate): # glob.glob(s+‘*.py‘) 从目录通配符搜索中生成文件列表 for im in glob.glob(folder + ‘/*.jpg‘): # 输出读取的图片的名称 print(‘reading the images:%s‘ % (im)) # io.imread(im)读取单张RGB图片 skimage.io.imread(fname,as_grey=True)读取单张灰度图片 # 读取的图片 img = io.imread(im) # skimage.transform.resize(image, output_shape)改变图片的尺寸 img = transform.resize(img, (w, h)) # 将读取的图片数据加载到imgs[]列表中 imgs.append(img) # 将图片的label加载到labels[]中,与上方的imgs索引对应 # labels.append(idx) # 将读取的图片和labels信息,转化为numpy结构的ndarr(N维数组对象(矩阵))数据信息 return np.asarray(imgs, np.float32) # 调用读取图片的函数,得到图片和labels的数据集 data = read_img(path) with tf.Session() as sess: saver = tf.train.import_meta_graph(‘E:/tensor_data/powerpoint/model/fc_model.ckpt-18.meta‘) saver.restore(sess, tf.train.latest_checkpoint(‘E:/tensor_data/powerpoint/model/‘)) # sess:表示当前会话,之前保存的结果将被加载入这个会话 # 设置每次预测的个数 graph = tf.get_default_graph() x = graph.get_tensor_by_name("x:0") feed_dict = {x: data} logits = graph.get_tensor_by_name("logits_eval:0") # eval功能等同于sess(run) classification_result = sess.run(logits, feed_dict) # 打印出预测矩阵 print(classification_result) # 打印出预测矩阵每一行最大值的索引 print(tf.argmax(classification_result, 1).eval()) # 根据索引通过字典对应的分类 output = [] output = tf.argmax(classification_result, 1).eval() for i in range(len(output)): print("第", i + 1, "张图片预测:" + flower_dict[output[i]])
这里生成的模型是ckpt,参考代码CNN中是没有指定输入输出结点名称的,这里直接在源码第11层修改即可。
使用Netron可以快速查看模型结构,找到输入输出结点名称。
也可以使用代码打印全部结点名称:
import os import tensorflow as tf checkpoint_path=os.path.join(‘E:/tensor_data/powerpoint/model/fc_model.ckpt-18‘) reader=pywrap_tensorflow.NewCheckpointReader(checkpoint_path) var_to_shape_map=reader.get_variable_to_shape_map() for key in var_to_shape_map: print (‘tensor_name: ‘,key)
拿到输出结点名称后,就可以使用脚本对ckpt模型转换了,转成pb格式
第一个参数是 ckpt模型地址,第二个是pb模型输出地址,第三个是输出结点
import tensorflow as tf def read_graph_from_ckpt(ckpt_path, out_pb_path, output_name): # 从meta文件加载网络结构 saver = tf.train.import_meta_graph(ckpt_path + ‘.meta‘, clear_devices=True) graph = tf.get_default_graph() with tf.Session(graph=graph) as sess: sess.run(tf.global_variables_initializer()) # 从ckpt加载参数 saver.restore(sess, ckpt_path) output_tf = graph.get_tensor_by_name(output_name) # 固化 pb_graph = tf.graph_util.convert_variables_to_constants(sess, graph.as_graph_def(), [output_tf.op.name]) # 保存 with tf.gfile.FastGFile(out_pb_path, mode=‘wb‘) as f: f.write(pb_graph.SerializeToString()) read_graph_from_ckpt(‘E:/tensor_data/powerpoint/model/fc_model.ckpt-18‘, ‘E:/tensor_data/powerpoint/model/idcard_seg.pb‘, ‘layer11-fc3/output:0‘)
拿到pb模型后,再使用Netron查看就清晰了很多~~~~
由于我训练模型是为了手机使用的,因此还需要将pb模型转成tflite格式
查看官方文档发现已经提供了转换的py接口,直接使用就好啦~
input是输入结点,output是输出结点,使用Netron看一下就好了
生成的tflite在你的工程根目录下
import tensorflow as tf graph_def_file = "E:/tensor_data/powerpoint/model/idcard_seg.pb" input_arrays = ["x"] output_arrays = ["layer11-fc3/output"] converter = tf.lite.TFLiteConverter.from_frozen_graph( graph_def_file, input_arrays, output_arrays) tflite_model = converter.convert() open("converted_model.tflite", "wb").write(tflite_model)
那个啥,完全没有测试模型的准确率emmm先试试看吧!
原文:https://www.cnblogs.com/robotpaul/p/11310967.html