时间复杂度的全程是渐进时间复杂度,表示算法的执行时间与数据规模之间的增长关系。
我们在分析一个算法、一段代码的时间复杂度的时候,也只关注循环执行次数对多的那段代码即可随着数据规模的增长,低阶和常量的量级就可以忽略,所以总的时间复杂度等于量级最大的那段代码的时间复杂度int i = 8;
int j = 6;
int sum = i + 
// 只要代码的执行时间不随n的增大而增长,这样的代码的时间复杂度我们都记作 O(1)
// 或者说,一般情况下,只要算法中不存在循环语句、递归语句,即使有成千上万行的代码,时间复杂度也是O(1)int i = 1;
while (i <= n) {
    i = i * 2;
}
//这个方法循环执行n次,时间复杂度就是O(nlogn)
int i = 1;
while (i <= n) {
    i = i * 2;
}
空间复杂度全程是渐进空间复杂度,表示算法的存储空间与数据规模之间的增长关系。
//  只有第三行申请了一个大小为n的int类型的数组,其他的代码都没有占用更多的空间,所以这段代码的空间复杂度是O(n)
void print(int n) {
 int i = 0;
 int[] a = new int[n];
 for (i; i <n; ++i) {
 a[i] = i * i;
 }
 for (i = n-1; i >= 0; --i) {
 print out a[i]
 }
}
// n 表示数组 array 的长度
int find(int[] array, int n, int x) {
 int i = 0;
 int pos = -1;
 for (; i < n; ++i) {
    if (array[i] == x) {
    pos = i;
    break;
   }
 }
 return pos;
}在最理想的情况下,执行完这段代码的复杂度。(上面代码中要查找的变量x正好是要数组的第一个元素)
在最糟糕的情况下,执行完这段代码的复杂度。(数组中没有要查找的变量x)
最好时间复杂度和最坏时间复杂度都是比较极端的情况,平均时间复杂度表示的是在正常情况下可能的时间复杂度,用代码在所有情况下执行的次数的加权平均值标示
在代码执行的所有复杂度情况中绝大部分是最低级别的复杂度,个别情况是高级别复杂度切发生具有时序关系时,可以将个别高级别复杂度均摊到低级别复杂度上,基本上均摊结果就等于低级别复杂度。它属于平均时间复杂度中的一种特殊的平均时间复杂度。
原文:https://www.cnblogs.com/jakaBlog/p/11284504.html