首页 > 其他 > 详细

图像语义分割准确率度量方法总结

时间:2019-07-21 19:48:36      阅读:765      评论:0      收藏:0      [点我收藏+]

图像语义分割准确率度量方法总结

衡量图像语义分割准确率主要有三种方法:

  1. 像素准确率(pixel accuracy, PA)
  2. 平均像素准确率(mean pixel accuracy, MPA)
  3. 平均IOU(Mean Intersection over Union, MIOU )

在介绍三种方法之前,需要先说明一些符号表示的意义。

技术分享图片 :类别总数,如果包括背景的话就是 技术分享图片

技术分享图片 :真实像素类别为 技术分享图片 的像素被预测为类别 技术分享图片 的总数量,换句话说,就是对于类别为 技术分享图片 的像素来说,被错分成类别 技术分享图片 的数量有多少。

技术分享图片 :真实像素类别为 技术分享图片 的像素被预测为类别 技术分享图片 的总数量,换句话说,就是对于真实类别为 技术分享图片 的像素来说,分对的像素总数有多少。

1.PA

PA的意义很简单,和我们常规的分类准确率计算没有区别,就是把分对的像素总量除以像素总数。

技术分享图片

2.MPA

MPA是对PA的改进,它是先对每个类计算PA,然后再对所有类的PA求平均。

技术分享图片

3.MIoU

在语义分割中,MIoU才是标准的准确率度量方法。它是分别对每个类计算(真实标签和预测结果的交并比)IOU,然后再对所有类别的IOU求均值。

技术分享图片

图像语义分割准确率度量方法总结

原文:https://www.cnblogs.com/yumoye/p/11222388.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!