
>> A=[2 1 3;1 3 2];B=[5;10]
B =
     5
    10
>> X=lsqnonneg(A,B)
X =
         0
    2.8571
    0.7143
>> A\B
ans =
         0
    2.8571
    0.7143

>> p=[1 -7 10] %表示x^2-7x+10
p =
     1    -7    10
>> r=roots(p)
r =
     5
     2
>> p=poly(r)%由根创建多项式
p =
     1    -7    10
>> A=ones(3),poly(A)
A =
     1     1     1
     1     1     1
     1     1     1
ans =
    1.0000   -3.0000   -0.0000   -0.0000
>> d=eig(A),[v,d]=eig(A)  %求方阵A的特征值d与特征向量
d =
   -0.0000
   -0.0000
    3.0000
v =
    0.4082    0.7071    0.5774
    0.4082   -0.7071    0.5774
   -0.8165         0    0.5774
d =
   -0.0000         0         0
         0   -0.0000         0
         0         0    3.0000
>> a=[1 -2],b=[1 -5],c=polyder(a,b) %多项式a和b乘积的导数
a =
     1    -2
b =
     1    -5
c =
     2    -7

>> x=[1 2 3 4 5],y=[5.5 43.1 128 290.7 498.4]
x =
     1     2     3     4     5
y =
    5.5000   43.1000  128.0000  290.7000  498.4000
>> plot(x,y,‘o‘)
>> p = polyfit(x,y,3)
p =
   -0.1917   31.5821  -60.3262   35.3400
>> xi=0:0.02:6;
>> yi=polyval(p,xi);
>> plot(x,y,‘ro‘,xi,yi,‘b-‘)
>> 


>> fun=@(x) 2*sin(x)-1
fun = 
    @(x)2*sin(x)-1
>> [x,f]=fminbnd(fun,3,6) %y=f(x)在指定区间[a,b]上的局部极小值指令为: [x,f]=fminbnd(fun,a,b);返回取极小值时自变量值x与函数值f_
x =
    4.7124
f =
   -3.0000
>> funf=@(x) x(1)^2+2.5*sin(x(2))-x(1)*x(2)^2*x(3)^2
funf = 
    @(x)x(1)^2+2.5*sin(x(2))-x(1)*x(2)^2*x(3)^2
>> [x,f]=fminsearch(funf,[1,-1,0])  %猜一个初始值,从这个点开始找局部最小值
x =
   -0.0000   -1.5708    0.0008
f =
   -2.5000
>> z=@(x,a,b) a*sin(x(1))+b*cos(x(2))
z = 
    @(x,a,b)a*sin(x(1))+b*cos(x(2))
>> [x,f]=fminsearch(@(x) z(x,2,1),[0,0]) %将一个新匿名函数做参数传入
x =
   -1.5708    3.1416
f =
   -3.0000
>> 
  
MATLAB学习(四)线性方程求解,多项式运算,函数局部最优解
原文:https://www.cnblogs.com/caiyishuai/p/11150094.html