首页 > 其他 > 详细

[实变函数]4.4 依测度收敛

时间:2014-02-15 01:09:24      阅读:394      评论:0      收藏:0      [点我收藏+]

1 以前学过

 点态收敛, 一致收敛,bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣
 

    本节将用测度引进另外一种收敛概念---``依测度收敛‘‘:

bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣(fbubuko.com,布布扣kbubuko.com,布布扣?f) (菲赫金哥尔茨的记号)bubuko.com,布布扣?? 误差 σ>0, E[|fbubuko.com,布布扣kbubuko.com,布布扣?f|σ] 虽然可能很多, 但其测度 0 (k).  bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣
           

 

2 依测度收敛:

(fbubuko.com,布布扣kbubuko.com,布布扣?f)?? σ>0, limbubuko.com,布布扣kbubuko.com,布布扣m[|fbubuko.com,布布扣kbubuko.com,布布扣?f|σ]=0.bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣
           

 

3 依测度收敛与  a.e. bubuko.com,布布扣 收敛的区别:  

    (1) 依测度收敛但不收敛的例子. 

    (2) a.e. bubuko.com,布布扣 收敛但不依测度收敛的例子:    

  fbubuko.com,布布扣kbubuko.com,布布扣(x)={  1,bubuko.com,布布扣  0,bubuko.com,布布扣bubuko.com,布布扣x(0,n]bubuko.com,布布扣x(n,+)  bubuko.com,布布扣bubuko.com,布布扣.  bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣
            

 

4 依测度收敛与 a.e. bubuko.com,布布扣 收敛的联系:  

    (1) (Riesz 定理)    

  (fbubuko.com,布布扣kbubuko.com,布布扣?f)?? {kbubuko.com,布布扣jbubuko.com,布布扣},s.t. fbubuko.com,布布扣kbubuko.com,布布扣jbubuko.com,布布扣bubuko.com,布布扣f,a.e. .  bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣
       

    证明:    

    bubuko.com,布布扣  bubuko.com,布布扣  bubuko.com,布布扣  bubuko.com,布布扣  bubuko.com,布布扣  bubuko.com,布布扣  bubuko.com,布布扣bubuko.com,布布扣fbubuko.com,布布扣kbubuko.com,布布扣?fbubuko.com,布布扣?? σ>0, limbubuko.com,布布扣kbubuko.com,布布扣m[|fbubuko.com,布布扣kbubuko.com,布布扣?f|σ]=0bubuko.com,布布扣?? σ>0, ? ε>0, ? k,s.t. m(E[|fbubuko.com,布布扣kbubuko.com,布布扣?f|σ])<εbubuko.com,布布扣?? sZbubuko.com,布布扣+bubuko.com,布布扣, ? kbubuko.com,布布扣sbubuko.com,布布扣,s.t. mEbubuko.com,布布扣sbubuko.com,布布扣<1bubuko.com,布布扣2bubuko.com,布布扣sbubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣(Ebubuko.com,布布扣sbubuko.com,布布扣=E[|fbubuko.com,布布扣kbubuko.com,布布扣sbubuko.com,布布扣bubuko.com,布布扣?f|1bubuko.com,布布扣2bubuko.com,布布扣sbubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣])bubuko.com,布布扣?m(bubuko.com,布布扣bubuko.com,布布扣s=1bubuko.com,布布扣Ebubuko.com,布布扣sbubuko.com,布布扣)<bubuko.com,布布扣s=1bubuko.com,布布扣bubuko.com,布布扣1bubuko.com,布布扣2bubuko.com,布布扣sbubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣=1<bubuko.com,布布扣?m(limbubuko.com,布布扣ˉbubuko.com,布布扣ˉbubuko.com,布布扣ˉbubuko.com,布布扣ˉbubuko.com,布布扣ˉbubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣sbubuko.com,布布扣Ebubuko.com,布布扣sbubuko.com,布布扣)=0(Page 75 T 11)bubuko.com,布布扣?fbubuko.com,布布扣kbubuko.com,布布扣sbubuko.com,布布扣bubuko.com,布布扣f  E?limbubuko.com,布布扣ˉbubuko.com,布布扣ˉbubuko.com,布布扣ˉbubuko.com,布布扣ˉbubuko.com,布布扣ˉbubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣sbubuko.com,布布扣Ebubuko.com,布布扣sbubuko.com,布布扣=bubuko.com,布布扣bubuko.com,布布扣m=1bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣s=mbubuko.com,布布扣E[|fbubuko.com,布布扣kbubuko.com,布布扣sbubuko.com,布布扣bubuko.com,布布扣?f|<1bubuko.com,布布扣2bubuko.com,布布扣sbubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣].  bubuko.com,布布扣bubuko.com,布布扣  bubuko.com,布布扣
 

    (2) (Lebesgue) 设 mE<bubuko.com,布布扣 ,    

  a.e.  有限的可测函数列 {fbubuko.com,布布扣kbubuko.com,布布扣}a.e.  收敛于 a.e.  有限的函数 f.  bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣
    则    
  fbubuko.com,布布扣kbubuko.com,布布扣?f.  bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣
    

    证明:    

    bubuko.com,布布扣  bubuko.com,布布扣  bubuko.com,布布扣bubuko.com,布布扣m(bubuko.com,布布扣bubuko.com,布布扣j=1bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣N=1bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣k=Nbubuko.com,布布扣E[|fbubuko.com,布布扣kbubuko.com,布布扣?f|1bubuko.com,布布扣jbubuko.com,布布扣bubuko.com,布布扣])=0bubuko.com,布布扣?? jZbubuko.com,布布扣+bubuko.com,布布扣, limbubuko.com,布布扣Nbubuko.com,布布扣m(bubuko.com,布布扣bubuko.com,布布扣k=Nbubuko.com,布布扣E[|fbubuko.com,布布扣kbubuko.com,布布扣?f|1bubuko.com,布布扣jbubuko.com,布布扣bubuko.com,布布扣])=0bubuko.com,布布扣?? jZbubuko.com,布布扣+bubuko.com,布布扣, limbubuko.com,布布扣Nbubuko.com,布布扣m(E[|fbubuko.com,布布扣Nbubuko.com,布布扣?f|1bubuko.com,布布扣jbubuko.com,布布扣bubuko.com,布布扣])=0.  bubuko.com,布布扣bubuko.com,布布扣  bubuko.com,布布扣
    注: Lebesgue 定理中 mE<bubuko.com,布布扣 是必须的. 否则有反例:    
  fbubuko.com,布布扣kbubuko.com,布布扣(x)={  1,bubuko.com,布布扣  0,bubuko.com,布布扣bubuko.com,布布扣x(0,n]bubuko.com,布布扣x(n,+)  bubuko.com,布布扣bubuko.com,布布扣.  bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣
            

    

5 依测度收敛的极限的唯一性 (在 a.e. bubuko.com,布布扣 意义下):

(fbubuko.com,布布扣kbubuko.com,布布扣?f, fbubuko.com,布布扣kbubuko.com,布布扣?g)?f=g,a.e. .bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣
证明:
E[|f?g|>0]bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣=bubuko.com,布布扣bubuko.com,布布扣j=1bubuko.com,布布扣E[|f?g|1bubuko.com,布布扣jbubuko.com,布布扣bubuko.com,布布扣]bubuko.com,布布扣=bubuko.com,布布扣bubuko.com,布布扣j=1bubuko.com,布布扣E[|(fbubuko.com,布布扣kbubuko.com,布布扣?f)?(fbubuko.com,布布扣kbubuko.com,布布扣?g)|1bubuko.com,布布扣jbubuko.com,布布扣bubuko.com,布布扣]bubuko.com,布布扣?bubuko.com,布布扣bubuko.com,布布扣j=1bubuko.com,布布扣(E[|fbubuko.com,布布扣kbubuko.com,布布扣?f|1bubuko.com,布布扣2jbubuko.com,布布扣bubuko.com,布布扣]E[|fbubuko.com,布布扣kbubuko.com,布布扣?g|1bubuko.com,布布扣2jbubuko.com,布布扣bubuko.com,布布扣]).bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣
 

 

6 各种收敛态的关系总结:

bubuko.com,布布扣       

 

7 作业: Page 95, T 15.    

[实变函数]4.4 依测度收敛

原文:http://www.cnblogs.com/zhangzujin/p/3549165.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!