Given a positive integer n, find the least number of perfect square numbers (for example, 1, 4, 9, 16, ...) which sum to n.
Example 1:
Input: n =12Output: 3 Explanation:12 = 4 + 4 + 4.
Example 2:
Input: n =13Output: 2 Explanation:13 = 4 + 9.
题目大意:
求解一个数最少能被多少个完全立方数相加得到。
解法:
使用动态规划的方法,dp[i]代表的是i最少能被多少个完全立方数相加得到,找到规律如下:
dp[0] = 0
dp[1] = dp[0]+1 = 1
dp[2] = dp[1]+1 = 2
dp[3] = dp[2]+1 = 3
dp[4] = Min{ dp[4-1*1]+1, dp[4-2*2]+1 }
= Min{ dp[3]+1, dp[0]+1 }
= 1
dp[5] = Min{ dp[5-1*1]+1, dp[5-2*2]+1 }
= Min{ dp[4]+1, dp[1]+1 }
= 2
.
.
.
dp[13] = Min{ dp[13-1*1]+1, dp[13-2*2]+1, dp[13-3*3]+1 }
= Min{ dp[12]+1, dp[9]+1, dp[4]+1 }
= 2
.
.
.
dp[n] = Min{ dp[n - i*i] + 1 }, n - i*i >=0 && i >= 1
java:
class Solution {
public int numSquares(int n) {
int[] dp=new int[n+1];
Arrays.fill(dp,Integer.MAX_VALUE);
dp[0]=0;
for(int i=1;i<=n;i++){
int j=1;
while(i-j*j>=0){
dp[i]=Math.min(dp[i-j*j]+1,dp[i]);
j++;
}
}
return dp[n];
}
}
原文:https://www.cnblogs.com/xiaobaituyun/p/10854252.html