首页 > 其他 > 详细

不等式恒成立求字母范围

时间:2019-05-11 10:49:25      阅读:141      评论:0      收藏:0      [点我收藏+]

1、$f(x)=(1-x^{2})e^{x}$,当x≥0时,f(x)≤ax+1恒成立,求a的取值范围

 

${\color{Teal}{法一:分离参数}}$

$$f(x)≤ax+1$$

$$(1-x^{2})e^{x}≤ax+1$$ 即 $$a≥\frac{(1-x^{2})e^{x}-1}{x}$$ 令$$g(x)=\frac{(1-x^{2})e^{x}-1}{x}$$ 即求a≥g(x)max对于任意的x≥0恒成立

通过求导可知:g(x)单调递减

g(x)max=g(0)

$$g(0)=lim(x→0)\frac{(1-x^{2})e^{x}-1}{x}=1$$ 所以a≥1

${\color{Teal}{法二}}$

令g(x)=f(x)-ax-1

即g(x)≤0对任意x≥0恒成立

$$g(x)=(1-x²)e^x-ax-1=e^x-x²e^x-ax-1$$ $$g‘(x)=e^x-2xe^x-x²e^x-a$$ $$g‘‘(x)=e^x-2e^x-2xe^x-2xe^x-x²e^x =e^x(-4x-2-x²)$$

所以g‘‘(x)max≤0

所以g‘(x)单调递减 $$g‘(x)max=g‘(0)=1-a$$

当1-a≤0时,即a≥1时

g‘(x)<0,g(x)递减,所以g(x)max=g(0)=0≤0恒成立

故而a≥1

不等式恒成立求字母范围

原文:https://www.cnblogs.com/Keyon-16/p/10847720.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!