首页 > 移动平台 > 详细

A Comprehensive Evaluation of Approaches for Built-Up Area Extraction from Landsat OLI Images Using Massive Samples(landsat8建城区提取不同方法比较)

时间:2019-05-07 21:45:33      阅读:205      评论:0      收藏:0      [点我收藏+]

感觉主要是数据的创新,方法就是比较了传统方法(RF,SVM,Adaboost)和CNN,输入比较了单像素输入和像素周围3,5,7大小的范围。也不是语义分割,最基本的CNN,单像素时还用的1*1的卷积

用的数据是landsat8作为检测的图,真值点用欧空局的2014年全球38m建城区数据为基准随机生成,再利用OpenStreetMap, 和 MOD13Q1-NDVI来对生成的点进行校正。

数据的处理方面除了landsat8的原始波段,将1-7波段最近邻法上采样到15m分辨率,再计算了NDBI, IBI, EMBI,纹理特征,灰度共生矩阵,各种组合作为输入比较。

由于不同特征数值范围不同,先归一化到0-1,再线性拉伸到0-255,一般都归一化到0-1就好了,它还再拉伸开来,可能这样对传统机器学习方法较好

还有一点就是他的文献综述还不错,比较了特征工程和特征学习,基于像素和基于patch,中分辨率建城区提取

A Comprehensive Evaluation of Approaches for Built-Up Area Extraction from Landsat OLI Images Using Massive Samples(landsat8建城区提取不同方法比较)

原文:https://www.cnblogs.com/tccbj/p/10828157.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!