首页 > 其他 > 详细

Super-Resolution Restoration of MISR Images Using the UCL MAGiGAN System 超分辨率恢复

时间:2019-05-01 16:57:58      阅读:154      评论:0      收藏:0      [点我收藏+]

作者是伦敦大学学院Mullard空间科学实验室成像组,之前做过对火星图像的分辨率增强。

文章用了许多的图像处理方法获得特征和高分辨率的中间结果,最后用一个生产对抗网络获得更好的高分辨率结果。

用的数据是MISR多角度成像数据,225282个训练样本,输入275m分辨率(64*64),得到68.75m(256*256)的分辨率结果

中间整个的流程和数据的处理都没怎么看懂

过程:

The MAGiGAN SRR system is based on the

mutual shape adapted [2] features from accelerated segment test (MSA-FAST) [3] combined with

convolutional neural network (CNN) [4] feature matching (see stage 2 in Section 2.2),

adaptive least-squares correlation (ALSC) and

region growing (Gotcha) [5] (see stage 3 in Section 2.2),

partial differential equation (PDE)-based total variation (TV) regularization (GPT) [6,7] (see stage 4 in Section 2.2),

support vector machine (SVM) and

graph cut (GC)-based shadow modelling and removal [8] (see stage 1 in Section 2.2), and

the generative adversarial network (GAN) [9] based super-resolution refinement method (see stage 5 in Section 2.2).

 

Super-Resolution Restoration of MISR Images Using the UCL MAGiGAN System 超分辨率恢复

原文:https://www.cnblogs.com/tccbj/p/10800083.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!