Isaacs, $\textit{Character Theory of Finite Groups}$, Theorem(1.16)
Let $A$ be a semisimple algebra and let $M$ be an irreducible $A$-module. Let $D=E_A(M)$. Then $E_D(M)=A_M$.
Pf: Without loss of generality, assume $M\subseteq A^{\circ}$ and let $I=M(A)$.
原文:https://www.cnblogs.com/zhengtao1992/p/10782695.html