首页 > 其他 > 详细

张恭庆编《泛函分析讲义》第一章第5节 凸集与不动点习题解答

时间:2014-02-14 21:53:54      阅读:998      评论:0      收藏:0      [点我收藏+]

1.含内点的真凸子集的性质

 设 \scrXXbubuko.com,布布扣 B^*Bbubuko.com,布布扣?bubuko.com,布布扣bubuko.com,布布扣 空间, EEbubuko.com,布布扣 是以 00bubuko.com,布布扣 为内点的真凸子集, PPbubuko.com,布布扣 是由 EEbubuko.com,布布扣 产生的 MinkowskiMinkowskibubuko.com,布布扣 泛函. 求证:

(1)    x\in \stackrel{o}E\lra P(x)<1xEbubuko.com,布布扣obubuko.com,布布扣?P(x)<1bubuko.com,布布扣 .

(2)    \dps{\overline{\stackrel{o}E}=E}Ebubuko.com,布布扣obubuko.com,布布扣bubuko.com,布布扣ˉbubuko.com,布布扣ˉbubuko.com,布布扣ˉbubuko.com,布布扣bubuko.com,布布扣=Ebubuko.com,布布扣 .

证明:

(1)    一方面, \bex x\in \stackrel{o}E &\ra& \exists\ \ve>0,\ s.t.\ \frac{x}{1/(1+\ve)}=x+\ve x\in E\\ &\ra&P(x)\leq \frac{1}{1+\ve}<1. \eex

xEbubuko.com,布布扣obubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣bubuko.com,布布扣? ε>0, s.t. xbubuko.com,布布扣1/(1+ε)bubuko.com,布布扣bubuko.com,布布扣=x+εxEbubuko.com,布布扣P(x)1bubuko.com,布布扣1+εbubuko.com,布布扣bubuko.com,布布扣<1.bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣
另一方面, 若 P(x)<1P(x)<1bubuko.com,布布扣 , 则

\bex x=\frac{x}{P(x)+\sez{1-P(x)}}\in E. \eex

x=xbubuko.com,布布扣P(x)+[1?P(x)]bubuko.com,布布扣bubuko.com,布布扣E.bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣
PPbubuko.com,布布扣 之连续性知 x\in \stackrel{o}ExEbubuko.com,布布扣obubuko.com,布布扣bubuko.com,布布扣 .

(2)    易知 \overline{\stackrel{o}E}\subset \overline{E}Ebubuko.com,布布扣obubuko.com,布布扣bubuko.com,布布扣ˉbubuko.com,布布扣ˉbubuko.com,布布扣ˉbubuko.com,布布扣bubuko.com,布布扣?Ebubuko.com,布布扣ˉbubuko.com,布布扣ˉbubuko.com,布布扣ˉbubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣 . 由

\bex \overline{\stackrel{o}E}&=&\overline{\sed{x\in \scrX;\ P(x)<1}}\\ &=&\sed{x\in\scrX;\ P(x)\leq 1}\\ & &\sex{\mbox{对 }x:P(x)=1,\mbox{有 } \frac{x}{1+1/n}\to x\mbox{且 } P\sex{\frac{x}{1+1/n}}=\frac{n}{n+1}<1}\\ &\supset&\overline{E}\ \sex{E\subset \sed{x\in\scrX;\ P(x)\leq 1}\mbox{ 闭集}} \eex

Ebubuko.com,布布扣obubuko.com,布布扣bubuko.com,布布扣ˉbubuko.com,布布扣ˉbubuko.com,布布扣ˉbubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣=bubuko.com,布布扣=bubuko.com,布布扣bubuko.com,布布扣?bubuko.com,布布扣bubuko.com,布布扣{xX; P(x)<1}bubuko.com,布布扣ˉbubuko.com,布布扣ˉbubuko.com,布布扣ˉbubuko.com,布布扣ˉbubuko.com,布布扣ˉbubuko.com,布布扣ˉbubuko.com,布布扣ˉbubuko.com,布布扣ˉbubuko.com,布布扣ˉbubuko.com,布布扣ˉbubuko.com,布布扣ˉbubuko.com,布布扣ˉbubuko.com,布布扣ˉbubuko.com,布布扣ˉbubuko.com,布布扣ˉbubuko.com,布布扣ˉbubuko.com,布布扣ˉbubuko.com,布布扣ˉbubuko.com,布布扣ˉbubuko.com,布布扣ˉbubuko.com,布布扣ˉbubuko.com,布布扣ˉbubuko.com,布布扣ˉbubuko.com,布布扣ˉbubuko.com,布布扣ˉbubuko.com,布布扣ˉbubuko.com,布布扣ˉbubuko.com,布布扣ˉbubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣{xX; P(x)1}bubuko.com,布布扣( x:P(x)=1, xbubuko.com,布布扣1+1/nbubuko.com,布布扣bubuko.com,布布扣x P(xbubuko.com,布布扣1+1/nbubuko.com,布布扣bubuko.com,布布扣)=nbubuko.com,布布扣n+1bubuko.com,布布扣bubuko.com,布布扣<1)bubuko.com,布布扣Ebubuko.com,布布扣ˉbubuko.com,布布扣ˉbubuko.com,布布扣ˉbubuko.com,布布扣bubuko.com,布布扣 (E?{xX; P(x)1} 闭集)bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣
即知结论.

 

 

2.列紧集的凸包

 求证在 BBbubuko.com,布布扣 空间中, 列紧集的凸包是列紧集.

证明:

(1)    首先证明若 A=\sed{x_1,x_2,\cdots,x_n}A={xbubuko.com,布布扣1bubuko.com,布布扣,xbubuko.com,布布扣2bubuko.com,布布扣,?,xbubuko.com,布布扣nbubuko.com,布布扣}bubuko.com,布布扣 , 则其凸包

\bex co(A)=\sed{\sum_{i=1}^n \lambda_ix_i;\ x_i\in A,\ \lambda_i\geq 0,\ \sum_{i=1}^n=1} \eex

co(A)={bubuko.com,布布扣i=1bubuko.com,布布扣nbubuko.com,布布扣λbubuko.com,布布扣ibubuko.com,布布扣xbubuko.com,布布扣ibubuko.com,布布扣; xbubuko.com,布布扣ibubuko.com,布布扣A, λbubuko.com,布布扣ibubuko.com,布布扣0, bubuko.com,布布扣i=1bubuko.com,布布扣nbubuko.com,布布扣=1}bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣
是列紧的. 事实上, 设 \sed{x^k}_{k=1}^\infty\subset co (A){xbubuko.com,布布扣kbubuko.com,布布扣}bubuko.com,布布扣bubuko.com,布布扣k=1bubuko.com,布布扣?co(A)bubuko.com,布布扣 , 其中

\bex x^k=\sum_{i=1}^k \lambda^k_i x_i,\ \lambda^k_i\geq 0, \ \sum_{i=1}^n \lambda^k_i=1. \eex

xbubuko.com,布布扣kbubuko.com,布布扣=bubuko.com,布布扣i=1bubuko.com,布布扣kbubuko.com,布布扣λbubuko.com,布布扣kbubuko.com,布布扣ibubuko.com,布布扣xbubuko.com,布布扣ibubuko.com,布布扣, λbubuko.com,布布扣kbubuko.com,布布扣ibubuko.com,布布扣0, bubuko.com,布布扣i=1bubuko.com,布布扣nbubuko.com,布布扣λbubuko.com,布布扣kbubuko.com,布布扣ibubuko.com,布布扣=1.bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣
\bex \sed{\lambda^k_1}_{k=1}^\infty\subset [0,1]\ra \exists\ \lambda^{k^1_j}_1\to \lambda_1\in [0,1]; \eex
{λbubuko.com,布布扣kbubuko.com,布布扣1bubuko.com,布布扣}bubuko.com,布布扣bubuko.com,布布扣k=1bubuko.com,布布扣?[0,1]?? λbubuko.com,布布扣kbubuko.com,布布扣1bubuko.com,布布扣jbubuko.com,布布扣bubuko.com,布布扣1bubuko.com,布布扣λbubuko.com,布布扣1bubuko.com,布布扣[0,1];bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣
\bex \sed{\lambda^{k^1_j}_2}_{j=1}^\infty \ra \exists\ \lambda^{k^2_j}_2\to \lambda_2\in [0,1]; \eex
\bex \cdots \eex
\bex \sed{\lambda^{k^{n-1}_j}_{j=1}}^\infty\subset [0,1]\ra \exists\ \lambda^{k^n_j}_2\to \lambda_n\in [0,1]. \eex
若记 \dps{x=\sum_{i=1}^n \lambda_ix_i} , 则 \bex \sum_{i=1}^n \lambda_i =\sum_{i=1}^n \lim_{j\to\infty}\lambda^{k^n_j}_i =\lim_{n\to\infty}\sum_{i=1}^n \lambda^{k^n_j}_i=1, \eex
\bex \sen{x^{k^n_j}-x} &=&\sen{\sum_{i=1}^n \sex{\lambda^{k^n_j}_i-\lambda_i}x_i}\\ &\leq&\sum_{i=1}^n \sev{\lambda^{k^n_j}_i-\lambda_i}\cdot\sen{x_i}\\ &\to&0\quad (j\to\infty). \eex

(2)    其次设 B 是列紧的, 为证 co(B) 也是列紧的, 由题 第1章第3节第1题 知, 仅需

验证对 \forall\ \ve>0 , co(B) 有列紧的 \ve 网. 注意到 \forall\ \ve>0 , B 有一有穷 \ve A . 由于 co(A) 是列紧的, 我们仅需确定 co(A) co(B) \ve 网. 事实上, \bex y\in co(B)&\ra& y=\sum_{i=1}^n \lambda_iy_i,\ y_i\in B,\ \lambda_i\geq 0,\ \sum_{i=1}^n \lambda_i=1\\ &\ra&\forall\ 1\leq i\leq n,\ \exists\ x_i\in A,\ s.t.\ \sen{y_i-x_i}<\ve\\ &\ra&x=\sum_{i=1}^n \lambda_ix_i\in co(A),\ \sen{y-x}\leq \sum_{i=1}^n \lambda_i\sen{y_i-x_i}<\ve. \eex

 

 

3.不动点存在性的一个充分条件

 设 C B^* 空间 \scrX 中的一个紧凸集, 映射 T:C\to C 连续. 求证 T C 上有一个不动点.

证明: T(C) 作为列紧集 C 的子集, 是列紧的. 故由 Schauder 不动点定理, T C 上有一个不动点.

 

 

4.不动点存在性的一个充分条件---压缩映射与紧映射的和

 设 C B 空间 \scrX 中的一个有界闭凸集, 映射 T_i:C\to C (i=1,2) 适合

(1)\forall\ x,y\in C\ra T_1x+T_2y\in C ;

(2) T_1 是一个压缩映射, T_2 是一个紧映射. 求证: T_1+T_2 C 上至少有一个不动点.

证明: 注意到 \exists\ c\in C , s.t. \bex (T_1+T_2)c=c&\lra& T_2c=(I-T_1)c\\ &\lra&(I-T_1)^{-1}T_2c=c. \eex

Schauder 定理, 为证结论我们仅须验证

(1) (I-T_1)^{-1} 存在且连续. 这是因为 T_1 是压缩的, 而 \bex \exists\ \alpha\in (0,1),\ s.t.\ \sen{T_1x-T_2x}\leq \alpha \sen{x-y} \quad \sex{\forall\ x,y\in C}, \eex

\bex \sen{(I-T_1)x-(I-T_1)y} \geq \sen{x-y}-\sen{T_1x-T_1y} \geq (1-\alpha)\sen{x-y}. \eex

(2) R(T_2)\subset Dom\sex{I-T_1}^{-1} . 事实上, 对 z\in R(T_2),\ \exists\ w\in C,\ s.t.\ z=T_2w . 构造映射 \bex \ba{cccc} T:&C&\to&C\\ &x&\mapsto&z+T_1x=T_2w+T_1x. \ea \eex

由于 T_1 是压缩的, C 是闭的, 应用压缩映象原理, \bex \exists\ x_0\in C,\ s.t.\ z+T_1x_0=x_0, \eex
\bex z=(I-T_1)x_0 \in R(I-T_1) =Dom(I-T_1)^{-1}. \eex

 

 

5.元素均为正的矩阵的特征值

 设 A n\times n 矩阵, 其元素 a_{ij}>0\ (1\leq i,j\leq n) . 求证: 存在 \lambda>0 及各分量非负但不全为零点向量 x\in\bbR^n , 使得 \bex Ax=\lambda x. \eex

证明: 考虑 \bbR^n 中的紧凸集 \bex C=\sed{y=(y_1,y_2,\cdots,y_n)\in\bbR^n;\ \sum_{i=1}^ny_i=1,\ y_i\geq 0\ (i=1,2,\cdots,n)}. \eex

构造映射 \bex \ba{ccc} C&\to&C\\ y&\mapsto&\dps{\frac{Ay}{\dps{\sum_{j=1}^n(Ay)_j}}}, \ea \eex
\bex \exists\ x\in C,\ s.t.\ x=\frac{Ax}{\dps{\sum_{j=1}^n(Ax)_j}}\ \sex{\sum_{j=1}^n(Ay)_j>0}, \eex
\bex Ax=\sez{\sum_{j=1}^n(Ax)_j}x. \eex

 

 

6.核为正的连续函数的积分算子的特征值

 设 K(x,y) [0,1]\times [0,1] 上的正值连续函数, 定义映射 \bex (Tu)(x)=\int_0^1 K(x,y)f(y)\rd y\quad \sex{\forall\ u\in C[0,1]}. \eex

求证: 存在 \lambda>0 及非负但不恒为零的连续函数 u , 满足 \bex Tu=\lambda u. \eex

证明: 考虑 C[0,1] 中的闭凸集 \bex C=\sed{f\in C[0,1];\ \int_0^1f(x)\rd x=1,\ f\geq 0}. \eex

构造映射 \bex \ba{cccc} \tilde T:&C&\to&C\\ &f&\mapsto&\dps{\sed{[0,1]\ni x\mapsto \frac{Tu(x)}{\int_0^1\int_0^1 K(x,y)f(y)\rd y\rd x}}}. \ea \eex
为应用 Schauder 不动点定理, 我们去验证 T(C) 是列紧的. 而由 Ascoli-Arzela 定理, 仅须 T(C) 是一致有界且等度连续的. 由 0<K\in C([0,1]\times [0,1]) \bex \exists\ 0<m<M<\infty,\ s.t.\ m\leq K(x,y)\leq M\quad \sex{\forall\ x,y\in [0,1]}, \eex
而对 \forall\ f\in C , \bex \sen{\tilde Tf}\leq \frac{M}{m}, \eex
\bex \sev{\tilde Tf(x_1)-\tilde Tf(x_2)} &=&\frac{\sev{\int_0^1 \sez{K(x_1,y)-K(x_2,y)}f(y)\rd y}}{ \int_0^1\int_0^1K(x,y)f(y)\rd y\rd x}\\ &\leq&\frac{1}{m}\int_0^1\sev{K(x_1,y)-K(x_2,y)}\cdot\sev{f(y)}\rd y\\ &<&\ve\quad \sex{\sev{x_1-x_2}\mbox{ 小}}. \eex
这样, 由 Schauder 不动点定理, \bex \exists\ u\in C,\ s.t.\ Tu=\lambda u, \eex
其中 \bex \lambda=\int_0^1\int_0^1K(x,y)f(y)\rd y\rd x \geq m>0. \eex

张恭庆编《泛函分析讲义》第一章第5节 凸集与不动点习题解答

原文:http://www.cnblogs.com/zhangzujin/p/3548765.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!