首页 > 其他 > 详细

Codeforces 785D - Anton and School - 2 - [范德蒙德恒等式]

时间:2019-04-11 22:46:05      阅读:204      评论:0      收藏:0      [点我收藏+]

题目链接:https://codeforces.com/problemset/problem/785/D

 

题解:

首先很好想的,如果我们预处理出每个 "(" 左边有 $x$ 个 "(",以及右边有 $y$ 个 ")",那么就有式子如下:

  若 $x+1 \le y$:$C_{x}^{0} C_{y}^{1} + C_{x}^{1} C_{y}^{2} + \cdots + C_{x}^{x} C_{y}^{x+1} = \sum_{i=0}^{x} C_{x}^{i} C_{y}^{i+1}$

  若 $x+1 > y$:$C_{x}^{0} C_{y}^{1} + C_{x}^{1} C_{y}^{2} + \cdots + C_{x}^{y-1} C_{y}^{y} = \sum_{i=0}^{y-1} C_{x}^{i} C_{y}^{i+1}$

然后算一下,哦哟 $O(n^2)$ 的优秀算法,GG,想了半天也不知道咋优化,看了题解才知道是“范德蒙德恒等式”:

$C_{m+n}^{k} = \sum_{i=0}^{k} C_{m}^{i} C_{n}^{k-i}$

那么就有:

$\sum_{i=0}^{x} C_{x}^{i} C_{y}^{i+1} = \sum_{i=0}^{x} C_{x}^{i} (C_{y-1}^{i} + C_{y}^{i}) = \sum_{i=0}^{x} C_{x}^{i} C_{y-1}^{i} + \sum_{i=0}^{x} C_{x}^{i} C_{y}^{i} = \sum_{i=0}^{x} C_{x}^{x-i} C_{y-1}^{i} + \sum_{i=0}^{x} C_{x}^{x-i} C_{y}^{i} = C_{x+y-1}^{x} + C_{x+y}^{x} = C_{x+y}^{x+1}$

类似的,也有:

$\sum_{i=0}^{y-1} C_{x}^{i} C_{y}^{i+1} = $

Codeforces 785D - Anton and School - 2 - [范德蒙德恒等式]

原文:https://www.cnblogs.com/dilthey/p/10692881.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!