首页 > 其他 > 详细

klearn.preprocessing.PolynomialFeatures学习

时间:2019-04-06 20:12:27      阅读:244      评论:0      收藏:0      [点我收藏+]

多项式特征处理

class sklearn.preprocessing.PolynomialFeatures(degree=2, interaction_only=False, include_bias=True)
参数:
degree 
interaction_only 默认为False
include_bias   表示生成0指数项


Parameters:
degree integer

The degree of the polynomial features. Default = 2.

interaction_only boolean, default = False

If true, only interaction features are produced: features that are products of at most degreedistinct input features (so not x[1] ** 2x[0] x[2] ** 3, etc.).

include_bias boolean

If True (default), then include a bias column, the feature in which all polynomial powers are zero (i.e. a column of ones - acts as an intercept term in a linear model).

 

案例1:

>>> import numpy as np
>>> from sklearn.preprocessing import PolynomialFeatures
>>> X = np.arange(6).reshape(3, 2)
>>> X                                                 
array([[0, 1],
       [2, 3],
       [4, 5]])
>>> poly = PolynomialFeatures(2)
>>> poly.fit_transform(X)                             
array([[ 1.,  0.,  1.,  0.,  0.,  1.],
       [ 1.,  2.,  3.,  4.,  6.,  9.],
       [ 1.,  4.,  5., 16., 20., 25.]])

技术分享图片

interaction_only=True
>>> X = np.arange(9).reshape(3, 3)
>>> X                                                 
array([[0, 1, 2],
       [3, 4, 5],
       [6, 7, 8]])
>>> poly = PolynomialFeatures(degree=3, interaction_only=True)
>>> poly.fit_transform(X)                             
array([[  1.,   0.,   1.,   2.,   0.,   0.,   2.,   0.],
       [  1.,   3.,   4.,   5.,  12.,  15.,  20.,  60.],
       [  1.,   6.,   7.,   8.,  42.,  48.,  56., 336.]])

技术分享图片

 

方法:

fit(X[, y])    Compute number of output features.
fit_transform(X[, y]) Fit to data, then transform it.
get_feature_names([input_features]) Return feature names
for output features
get_params([deep]) Get parameters
for this estimator.
set_params(
**params) Set the parameters of this estimator.
transform(X) Transform data to polynomial features

 

klearn.preprocessing.PolynomialFeatures学习

原文:https://www.cnblogs.com/students/p/10662684.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!